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Antenna Arrays Principle and Solutions: Robust Control Approach

Florin Hutu, Sebastien Cauet, Patrick Coirault

Abstract: This paper treats solutions on the ability of a chain of non identical oscilla-
tors to drive antenna arrays. Frequency approaches were studied in order to solve the
problem of synchronization of the oscillators. However, in this article, a new structure
of chain of oscillators is introduced. Secondly, Lyapunov theory of stability is used
to design a dynamical controller guarantying the oscillators synchronization. The
problem of synchronization is transformed into a problem of asymptotic stabiliza-
tion for a nonlinear system. It is formulated as a system of linear matrix inequalities
where the parameter variations of the two oscillators and their differences are mod-
eled by polytopic matrices. The theoretical result is successfully applied to an array
of transistor-based oscillators used in "smart antenna" systems.
Keyword : Nonlinear systems, Control applications, Antenna arrays

1 Introduction

The demand of mobile communication services is in a continuous growth, moreover, it is estimated
that the rate will be maintained in the next years. This continuous development has stimulated the
research of new hardware and software solutions in order to increase the volume of exchanged data and
a better management of the emitted or received electromagnetic field.

Smart antenna arrays comprise a number of antennas that work in conjunction with an intelligent
system that processes the received and transmitted data. The processing can be realized in a hardware or
in a software way and allows smart antenna arrays to focus beams into particular directions.

This problem can be partially solved by using several directional antennas. This solution divides the
360-degree coverage area into sectors. However, smart antenna arrays provide a much more effective
solution by focusing the transmitted power toward user and only looking in the direction of the user for
the up link signal. This ensures that the user receives the optimum quality of service and the maximum
coverage from a base station.

The new technologies development increases the antenna array performances and minimizes the costs
of production and the occupied space. It makes them implementable in domains like wireless or satellite
communications, radar systems, missile defense systems, automobile industry, etc.

Smart antennas or antenna arrays are a part of communication systems that can improve their global
performances. This technique can increase the spectral efficiency and reduce the multi path fading, bit
error rate (BER), the co-channel interferences (CCI) and the system complexity [1]. This is possible by
electronically adjusting the beam pattern of the antenna array in order to provide important gain for the
desired signals and small gain for interference signals.

At emission, the purpose of smart antennas is to minimize the interference between the different
transmitters who works on the same communication channel and, thus to more efficiently use the emitted
power. For this reason, the beam shape must be controlled in order to minimize the amplitude of the side
lobes and to maximize the energy in the main lobe. Moreover, the direction of the main lobe must be
controlled. the focused application is inter-vehicle communication. The bandwidth will be, first of all,
in the area of 24Ghz and finally around 79GHz. At these frequencies, technique like "software defined
radio" can not be used. One of the main objectives that is pointed out is to develop a structure which will
extend in both space and time the safety information available to drivers by using the infrastructure and
vehicles as sources.
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When the smart antennas are used in reception systems, the signals coming from interference direc-
tions must be rejected and those which comes from the desired directions must be privileged. For this
reason, different phases and amplitudes must be assured by the carrier signals locally generated [2, 3, 4].

The work that has been done in the field of dynamics of coupled nonlinear systems using the fre-
quency approach [5][6, 7][8] shows that they offer methods of phase control among array elements and
beam scanning capabilities but also implies problems of stabilization.

The proposed structure of the array of antennas is based on unidirectional coupled oscillators.
In details, this paper treats the synchronization of a system made by two oscillators with an unidi-

rectional coupling and this problem of synchronization is transformed in a problem of stabilization for a
nonlinear system. The strategy chosen is to find an output feedback dynamic controller using Lyapunov
functions that assures a robust synchronization despite parameters variations of the oscillators.

The problem of computing dynamic output feedbacks on LTI (linear time-invariant) systems in term
of matrix inequalities is difficult to solve. There are two known techniques: the iterative algorithms and
the cancellation of variable products by using the matrix separation lemma. The reader can found some
papers on treatment of this problem by LMI (Linear Matrix Inequality)-s who can be numerically solved
[9, 10, 11, 12, 13].

The variations of the parameters of the oscillators are taken into account by considering the state
matrix as a polytopic one. The polytopic structure is easily tractable by Linear Matrix Inequalities. Once
the stability of the vertices, defined for the polytope is proved, the stability and the synchronization of
the two oscillators is assured for all systems inside the polytope.

The nonlinear character of the oscillators allows the synchronization (if their free running frequencies
are in a certain domain [6]) but also makes them dependent of initial conditions. The main objective is
to cancel the nonlinear effect and to maintain the synchronization when the physical parameters of the
oscillators and external conditions are modified. The originality of the method comes from the inclusion
of the non-linear term and the undesired variations in a perturbation. This problem is transformed in a
H∞ optimization.

In section 2 is presented an overview of the antenna array theory. In section 3 a model of Master and
Slave oscillators and the controller synthesis are introduced. Section 4 presents the numerical results in
the case of an array of coupled nonlinear oscillators.

2 Antenna array theory overview

2.1 Theoretical background

A smart antenna is composed by an array of individual radiative elements (elementary antennas),
which are placed in a particular configuration (linear, circular or matrix). By gathering these elementary
antennas in such arrays and by changing the characteristics of the signals associated to each element, the
array can present different gains according to the direction.

Let us consider an uniform linear array of N identical patch antennas placed at the same distance d
between them as in Fig. 1.

For the theoretical study of this configuration, it is assumed that in the elementary antennas, harmonic
signals of the same frequency but different amplitudes and phases are injected.

The mathematical expression of the total electromagnetic field generated by the array in far-field
regions (Fraunhofer regions) can be written as the product of the electromagnetic field of the reference
antenna (which is considered the first antenna in the array) and a term which depends on the amplitudes
and phases of the injected signals

Etotal = Ere f ∗ f (Θ). (1)

Thereafter, the gain of the antenna array will be considered, knowing that it is a normalization of the
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Figure 1: An uniform antenna array

amplitude of the electromagnetic field. The array factor can be written as

f (Θ) =
N

∑
m=1

wme− j(m−1)k0d cosΘ, (2)

where wm = Ame jϕm .
In the easiest emission case, the amplitudes have the same value, the mathematical expression of the

radiation pattern is

f (θ) =
1
N

sin Nγ
2

sin γ
2

, (3)

where γ = ϕ − k0d cos(θ), N the number of antennas, d the distance between them. It can be seen
that a quantity of the radiated energy is lost in the side lobes which implies a certain weakening of the
antenna array gain.

It is obvious that in the emission case, both variations of the amplitudes and the phases of the carrier
signals are in a large interval. This paper proposes a new technique to generate such signals, which have
the same frequency and different phases and amplitudes. It can be concluded that both variations of the
amplitudes and phases are in a large interval.

3 Problem formulation

3.1 Problem statement

If the amplitude variation can be easily solved by using variable gain amplifiers, the problem of the
phase variation is more constraining.

There are several techniques which permits solving this problem. The main technical problem with
beamforming for transmit is realizing the phase and amplitude of the signals in each antenna channel.
The first step will be generating the reference signal with the selected or required frequency. It has to
be modulated with the information to be transmitted (e.g. radar, communication). Then it has to be
amplified and distributed to all transmit channels. Then the individual signals have to be weighted for
beamforming, that means amplified or attenuated, according to the desired weighting amplitude. The
desired phase has to be realized by a suitable steerable phase shifter or delay line. Digital devices are
now available, under the headline "software defined radio". This technique is not usable on frequencies
over 400 Mhz. Here, techniques, which are pointed out, are designed for applications over 2GHz.

Techniques can be divided into both main approaches. The first approach uses the signal generated
by one oscillator and the second which uses signals generated by array of coupled oscillators.

Signals with the same frequency but different phases and amplitudes can be built by delaying the
signal generated with one master oscillator using high-frequency power dividers and variable delay lines
or Butler couplers. This approach is very useful when discrete-time systems are built. Another approach
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is to use polyphasic oscillators and a multiplexing system [5]. But in these techniques, it can not be
obtained continuous phase variations.

The second approach is based on the synchronization of arrays of oscillators having their free run-
ning frequencies with a weak dispersion. In [6, 8] it was demonstrated that arrays of coupled nonlinear
oscillators can synchronize. Moreover, according to the coupling strength and to free-running frequen-
cies, phase variations can be made. Recent works [14] shows how the phase variation can be guaranty
by changing only the free-running frequencies of all coupled oscillators in the array.

In order to generate these carrier signals, the following general schematic Fig. 2 is proposed.
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Figure 2: Unidirectional coupling of a chain of oscillators

This schematic is a variation of the York’s approach shown in [15]. Because of the unidirectional
coupling, each slave oscillator is driven only by its left neighbor. Hence, the study of this configuration
is reduced to the study of a pair of two non-linear systems (Master-Salve synchronization). The purpose
is to design the parameters of the controller system ΣC in order to make the output ye(t) tends toward
zero. When this objective is fulfilled, the delayed output of the master oscillator and the output of the
slave oscillator become identical, so both oscillators are synchronized.

Generally, because of the technological realization, the oscillators don’t have the same free running
frequencies. This is the reason why the feedback loop was introduced to guarantee the robust syn-
chronization between both oscillators. The delay element and the variable gain amplifier will guaranty
different phases and amplitudes for the output signals.

The difference between the oscillators will be modeled as a variation of the slave oscillator parame-
ters around those of the master oscillator parameters, which is considered as the reference. The variations
due to the temperature or at the ageing of the components are modeled by a polytopic uncertainty of the
master oscillator parameters around the nominal values.

The oscillators are built using a double differential pair structure. In order to determine the parame-
ters of the dynamical controller, the nonlinear oscillators is modeled using the van der Pol model.

In this article, we consider that the system is a perturbed van der pol model as:
{

ẋ = A(θ1)x+g(x, t,θ1)+Bu
y = Cx

, (4)

where

x =
[

iL
v0

]
A(θ1) =




0
1
L0

− 1
C0

0


 u =

iin j

C0

g(x, t,θ1) =




0
α
C0

x2− β
C0

x2
3


 B =

[
0
1

]
C =

[
0 1

]
,

(5)

with the uncertain parameters θ1 = [α,L0,C0].
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3.2 Master-slave synchronization

The structure is made up by two different systems which belong to the class previously described.
The master system is considered independent (u = 0) and the dynamical controller ΣC drives the slave
system using the error signal as reference. The error signal is constituted by the difference between a
delayed version of the master output and the slave output.

The state-space representation of the master system can be written as follows

ΣM :
{

˙xM = AM(θ1)xM +gM(xM, t,θ1)
yM = CxM

. (6)

For the slave system, the state-space representation can be written as

ΣS :
{

ẋS = AS(θ1)xS +gS(xS, t,θ1)+B2u
yS = CxS

. (7)

Between the parameters of the master and the slave oscillators, it is considered that there is the same
difference δ 




LS = LM (1+δ )
CS = CM (1+δ )
αS = αM (1+δ )
βS = βM (1+δ )

. (8)

In that case, this notation can be introduced

AM(θ1) = AS(θ1)+B1(θ2). (9)

This difference is transformed into the difference between the state matrix of the master and the slave.
With the assumptions in (8), B1(θ2) can be written as follows

B1(θ2) =




0 − δ
LM (1+δ )

δ
CM (1+δ )

0


 . (10)

If an error state is defined as
e(t) = xM(t− τ)− xS(t), (11)

a state-space representation can be written

Σe :
{

ė = AM(θ1)e−B1(θ2)xs + eg(xM,xS, t,θ1)−B2u
ye = Ce

, (12)

where
eg(xM,xS, t,θ1) = gM(xM, t,θ1)−gS(xS, t,θ1). (13)

3.3 Nonlinear bound determination

In order to determine the bounds of the nonlinearities difference, the scalar function f : D1 7→ D2
f (x) =−αx +βx3 is used. The bounds can be considered as the slopes of the tangents passing through
x = xm and x = 0 of f (x).

−α(x2− x1)≤ ( f (x2)− f (x1))≤ (−α +3βxm
2)(x2− x1)

∀x1,x2 ∈D1

(14)
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Consider both nonlinear oscillators and the domain D1 = [−1.35V,1.35V ], then the bound of the nonlin-
earities difference (13) can be written as follows




0

− 1
C0

(
α +3β−0.22)


≤ eg(xM,xS, t,θ)≤




0

α
C0


 . (15)

3.4 Controller synthesis

Assume that AM(θ1) resp. B1(θ2) are two matrices that belong to a polytope of matrices and it is
represented by a convex combination of the extreme matrices Ai resp. B1i with i = 1 . . .2M .

AM =

{
AM(θ1)| AM(θ1) =

2M

∑
i=1

ξiAi; ξi ∈ ∆1

}
(16)

and consider that the matrix eg(xM,xS, t,θ1) can be bounded with NB(θ1) being its upper bound

eg(xM,xS, t,θ1)≤ NB(θ1)e. (17)

The worst case for our system is the superior limit, then the matrix AN(θ) = AM(θ1)+NB(θ1).
Assume that the dynamical output controller of the system (12) is described by the following state-

space representation and its dimension is nc.

ΣC :
{

ẋc = Acxc +Bcye

u = Ccxc +Dcye
(18)

The purpose of this controller is to make the slave system follow the delayed output of the master
system. This condition is performed when the error signal defined in (11) tends toward zero. The term
B1(θ2)xs, representing the difference between both systems, acts as a perturbation on the error state e.

The synthesis of this controller has been made with a technique similar to [9, 10] The following
theorem solves the problem of variable matrices product in the synthesis problem by introducing extra
unknown variable matrices.

Theorem 1. If there exists a set of matrices Pi > 0, a state feedback controller K0, an unknown variable
square and nonsingular matrix G ∈ Rnu+nc , an unknown variable matrix H ∈ R(nu+nc)×(nu+nc) and four
unknown variables matrices F1,F4 ∈ R(nx+nc)×(nx+nc), F2 ∈ Rnx×(nx+nc) and F3 ∈ R(n∞+nc)×(nx+nc) such
that the inequality (19) is verified, then the dynamical controller K = G−1L makes the error system (12)
asymptotically stable for all matrices AN(θ1) and B1(θ2) described as a polytope.

Φ2 + 1Sym








F1
F2
F3
F4
O




[
O O O O B̃2

]





+Sym








O
O
O
O
I




L
[

C̃ O O O O
]





+Sym








O
O
O
O
I




G
[ −K0 O O O −I ]





<O;

(19)
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The matrix Φ2 is defined as follows

Φ2 =




O O Ccl
T Pi O

O −γI O O O
Ccl O −γI O O
Pi O O O O
O O O O O




+Sym








F1
F2
F3
F4
O




[
Ã0i B̃1 j O −I O

]





∀i ∈ {1 . . .2M} and ∀ j ∈ {1 . . .2P}

, (20)

where Ã0i = ÃNi + B̃K0 and

K =
[

Dc Cc

Bc Ac

]
. (21)

The expression (16) can be numerically solved using Matlab’s© "LMI Toolbox".

4 Numerical results

In order to check the theoretical result, a transistor-based simulation has been done using Agilent’s
ADS© software and MOSFET transistors in 0.35µm silicon technology.

It was considered that all the parameters of AN(θ) have ±5% variation around their nominal values.
This variation can be seen as the variation depending on the temperature of the oscillators that are built
on the same integrated circuit substrate. This is mathematically transformed into the variation of the state
matrix AN(θ1) inside the polytope. Using the Matlab’s ”LMI Toolbox” applied to the 8 vertices of the
polytope, the following output-feedback controller was found

K =
[

Dc Cc

Bc Ac

]
=

[
2.66588 ·1011 22.3994
7.51499 ·109 −1.1885

]
. (22)

It assures the synchronization of oscillators having δ = ±5% difference between parameters. This
difference is represented by variation of the perturbation matrix B1(θ2) inside the polytope.

Variations between LM , CM and LS, CS parameters, corresponds to a possible difference between the
free-running frequencies of both oscillators

f0S ∈
[

f0M (1−|δ |)2 f0M (1+ |δ |)2
]
. (23)

The difference between αM, βM and αS, βS stands for a possible difference between the transistor oper-
ating points of both nonlinear oscillators.

This controller was applied to a pair of both non-linear oscillators. Their free running frequencies
are f0M = 2GHz and f0S = 2.2GHz. It has been chosen those frequencies in order to build a discrete
component platform.

In fig. 4 are presented both output voltages for master and slave oscillators and is divided into three
sequences. a first sequence in which, the controller Σc is not activated, both oscillators oscillates from
their free-running frequencies. the second step at t = 55ns, the controller Σc is activated. The obtained
delay is closed to the imposed value (τ = T/4 = 1.25 ·10−10s). This delay will correspond to a orientation
of the main lobe in Θ = 120◦. Finally, at t = 60ns, in order to verify the robustness of the dynamical
controller, the free running frequency of the master oscillator was changed to fM = 2GHz.

In fig. 3 the error between both output signals is presented. It can be seen that the error tends toward
zero after a short period of time when the controller is started.

1Sym{X}= XT +X ; ∀X ∈ Rn
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Figure 3: Output voltages of both oscillators

Figure 4: The error between both signals provided by the oscillators

4.1 Array of oscillators

Consider the situation where the Θp = 60◦ direction must be privileged and Θi1 = 90◦ and Θi2 = 120◦

must be rejected.
In table 4.1, the necessary and final values of the amplitudes and phases are shown for N = 8 antennas.

Figure fig.5 depicts the corresponding radiation pattern. The orientation of the main lobe is closed to the
desired value Θp = 58.14 and both interference directions Θi1 = 90◦ and Θi2 = 120◦ are rejected.

5 Conclusion

This paper presents a novel method to drive antenna arrays. It is based on unidirectionally coupled
oscillators. An output feedback controller has been designed to assure synchronization with advanced
control theory using LMI (Linear Matrix Inequalities) tools. The result was successfully extended to
a chain of eight unidirectionally coupled oscillators. Additional research will be made to constrain the
dynamical controller to realize the desired delay in order to eliminate the delay element.
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Amplitudes [V ] Phases [◦]
necessary simulated necessary simulated

0.269 0.21 0 0
0.21 0.2 143 138
0.14 0.14 180 179
0.4 0.4 -162 160
0.08 0.08 0 -2
0.14 0.13 63.1 57

0 0 0 7
0.3 0.29 -24.4 -30

Table 1: computed and final values for the amplitudes and phases

Figure 5: The radiation pattern in the particular case of Θp = 60◦
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