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Abstract: The vehicle routing problem (VRP) is one of the most famous
combinatorial optimization problems and has been intensively studied due to
the many practical applications in the field of distribution, collection, logistics,
etc.
We study a generalization of the VRP called the generalized vehicle routing
problem (GVRP) where given a partition of the nodes of the graph into node
sets we want to find the optimal routes from the given depot to the number
of predefined clusters which include exactly one node from each cluster. The
purpose of this paper is to present heuristic algorithms to solve this problem
approximately. We present constructive algorithms and local search algorithms
for solving the generalized vehicle routing problem.
Keywords: network design, combinatorial optimization, generalized vehicle
routing problem, heuristic algorithms.

1 Introduction

Combinatorial optimization is a lively field of applied mathematics, combining techniques
from combinatorics, linear programming, and the theory of algorithms, to solve optimization
problems over discrete structures. The study of combinatorial optimization owes its existence to
the advent of modern digital computer. Most currently accepted methods of solution to com-
binatorial optimization problems would hardly have been taking seriously 30 years ago, for the
simple reason that no one could have carried out the computations involved. Moreover, the exis-
tence of digital computers has also created a multitude of technical problems of a combinatorial
character.

Combinatorial optimization problems can be generalized in a natural way by considering a
related problem relative to a given partition of the nodes of the graph into node sets, while
the feasibility constraints are expressed in terms of the clusters. In this way, it is introduced
the class of generalized combinatorial optimization problems. In the literature one finds gener-
alized problems such as the generalized minimum spanning tree problem [15], the generalized
traveling salesman problem, the generalized vehicle routing problem, the generalized (subset) as-
signment problem, etc. These generalized problems belong to the class of NP-complete problems,
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are harder than the classical ones and nowadays are intensively studied due to the interesting
properties and applications in the real world, even though many practitioners are reluctant to
use them for practical modeling problems because of the complexity of finding optimal or near-
optimal solutions.

The Generalized Vehicle Routing Problem (GVRP) is an extension of the Vehicle Routing
Problem (VRP) and was introduced by Ghiani and Improta [4]. The GVRP is the problem
of designing optimal delivery or collection routes, subject to capacity restrictions, from a given
depot to a number of predefined, mutually exclusive and exhaustive node-sets (clusters). The
GVRP can be viewed as a particular type of location-routing problem (see, e.g. Laporte [7],
Nagy and Salhi [10]) for which several algorithms, mostly heuristics, exist.

Ghiani and Improta [4] showed that the problem can be transformed into a capacitated
arc routing problem (CARP) and Baldacci et al. [1] proved that the reverse transformation is
valid. Recently, Pop [14] provided a new efficient transformation of the GVRP into the classical
vehicle routing problem (VRP). In 2003, Kara and Bektas [5] proposed an integer programming
formulation for GVRP with a polynomially increasing number of binary variables and constraints
and in 2008 Kara and Pop [6] presented two integer linear programming formulations for GVRP
with O(n2) binary variables and O(n2) constraints, where n is the number of customers which
are partitioned into a given number of clusters. As far as we know, the only specific algorithm for
solving the GVRP was developed by Pop et al. [13] and was based on ant colony optimization.

The complexity of obtaining optimum or even near-optimal solutions for the generalized
combinatorial optimization problems may lead to the development of:

• efficient transformations of the generalized combinatorial optimization problems into clas-
sical combinatorial optimization problems [4, 13];

• heuristic and metaheuristic algorithms [11].

The aim of this paper is to describe three classes of heuristic algorithms for solving approxi-
mately the generalized vehicle routing problem.

2 Definition of the GVRP

Let G = (V,A) be a directed graph with V = {0, 1, 2, ...., n} as the set of vertices and the set
of arcs A = {(i, j) | i, j ∈ V, i ̸= j}. A nonnegative cost cij associated with each arc (i, j) ∈ A.
The set of vertices (nodes) is partitioned into k+1 mutually exclusive nonempty subsets, called
clusters, V0, V1, ..., Vk (i.e. V = V0 ∪ V1 ∪ ... ∪ Vk and Vl ∩ Vp = ∅ for all l, p ∈ {0, 1, ..., k} and
l ̸= p). The cluster V0 has only one vertex 0, which represents the depot, and remaining n
nodes belonging to the remaining k clusters represent geographically dispersed customers. Each
customer has a certain amount of demand and the total demand of each cluster can be satisfied
via any of its nodes. There exist m identical vehicles, each with a capacity Q.

The generalized vehicle routing problem (GVRP) consists in finding the minimum total cost
tours of starting and ending at the depot, such that each cluster should be visited by exactly
once, the entering and leaving nodes of each cluster is the same and the sum of all the demands
of any tour (route) does not exceed the capacity of the vehicle Q. An illustrative scheme of the
GVRP and a feasible tour is shown in the next figure.
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Figure 1 An example of a feasible solution of the GVRP

In Figure 1, it is presented a feasible solution consisting of a collection of two tours (routes):
0-3-5-0 and 0-11-7-6-0 satisfying the capacity restrictions and the condition that from each cluster
is visited exactly one node. The cost of this feasible solution is obtained summing the costs of
the arcs belonging to the selected tours.

The GVRP reduces to the classical Vehicle Routing Problem (VRP) when all the clusters
are singletons and to the Generalized Traveling Salesman Problem (GTSP) when m = 1 and
Q =∞. The GVRP is NP -hard because it includes the generalized traveling salesman problem
as a special case when m = 1 and Q =∞.

Several real-world situations can be modeled as a GVRP. The post-box collection problem
described in Laporte et al. [8] becomes an asymmetric GVRP if more than one vehicle is required.
Furthermore, the GVRP is able to model the distribution of goods by sea to a number of
customers situated in an archipelago as in Philippines, New Zeeland, Indonesia, Italy, Greece
and Croatia. In this application, a number of potential harbours is selected for every island and
a fleet of ships is required to visit exactly one harbour for every island. Several applications of
the GTSP may be extended naturally to GVRP.

3 Heuristic Algorithms for Solving the GVRP

Two fundamental goals in computer science are finding algorithms with provably good run
times and with provably good or optimal solution quality. A heuristic is an algorithm that
abandons one or both of these goals; for example, it usually finds pretty good solutions, but there
is no proof the solutions could not get arbitrarily bad; or it usually runs reasonably quickly, but
there is no argument that this will always be the case. Heuristics are typically used when there
is no known method to find an optimal solution, under the given constraints (of time, space etc.)
or at all.

Several families of heuristic algorithms have been proposed for the classical VRP, see for
example Laporte et al. [9]. These can be classified into two main classes: classical heuristics and
metaheuristics. Most standard construction and improvement procedures in use belong to the
first class. These methods performs a relatively limited exploration of the solution space and
generally produce good quality solutions in reasonable computational times.

In what it follows we will provide three classes of heuristic algorithms for solving the GVRP:
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• constructive heuristics: Nearest Neighbour and a Clarke-Wright based heuristic;

• improvement heuristics: String Cross (SC), String Exchange (SE), String Relocation (SR)
and String Mix (SM);

• a local-global heuristic.

3.1 Constructive heuristics

Nearest Neighbour

Perhaps the most natural heuristic for the GVRP is the famous Nearest Neighbour algorithm
(NN). In this algorithm the rule is always to go next to the nearest as-yet-unvisited customer
subject to the following restrictions: we start from the depot, from each cluster is visited exactly
one vertex (customer) and the sum of all the demands of the current tour (route) does not exceed
the capacity of the vehicle Q. If the sum of all the demands of a current tour (route) exceeds the
capacity of the vehicle then we start again from the depot and visit next the nearest customer
from an unvisited yet cluster. If all the clusters are visited, then the algorithm terminates.
A collection of routes traversing exactly one city from each cluster in the constructed order
represents the output of the algorithm.

The nearest neighbour algorithm is easy to implement and executes quickly, but it can some-
times miss shorter routes, due to its greedy nature. The running time of the described nearest
neighbour algorithm is O(n2).

A Clarke-Wright based heuristic algorithm

The Clarke and Wright [2] savings algorithm is perhaps the most well known heuristic for
the VRP. It applies for the problems for which the number of vehicles is a decision variable, and
works in the case of directed and undirected problems.

The algorithm in the case of the GVRP works as follows:

Step 1 (Savings computation). For each i ∈ Vl and j ∈ Vp, where l ̸= p and l, p ∈ {1, ..., k}
compute the savings:

sij = ci0 + c0j − cij .

It is obviously that sij ≥ 0 and sij = sji. We order the savings in a nonincresing fashion.
At the beginning we create k routes denoted (0, il, 0), l ∈ 1, ..., k as follows for each cluster

Vl we define c0il = min{c0j | j ∈ Vl}.
There will be as many routes as the number of clusters and total distance of the routes is:

d = c0i1 + c0i2 + ...+ c0ik .

Step 2 (Route extension). Consider in turn each route (0, i, ..., j, 0). Determine the first
saving sui or sjv that can feasibly be used to merge the current route with another route ending
with (u, 0) or starting with (0, v), for any u ∈ Vl and v ∈ Vp, where l ̸= p and l, p ∈ {1, ..., k}
and Vl and Vp are clusters not visited by the route (0, i, ..., j, 0).

Because at a given moment there can exist more feasible route extensions, the priority will
have that one that produces the biggest reduction of the total distance of the route.

We implement the merge and repeat this operation to the current route. If no feasible merge
exists, consider the next route and reapply the same operations.

Stop when no route merge is feasible.

The Clarke-Wright based algorithm for solving the GVRP is easy to implement and its
running time is O(n2 log n).
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3.2 Improvement heuristics

The improvement heuristics algorithms for the GVRP are based on simple routes modifica-
tions and may operate on each vehicle route taken separately, or on a several routes at a time. In
the first case, any improvement heuristic for Traveling Salesman Problem (TSP) can be applied,
such as 2-OPt, 3-Opt, etc. In the second case, procedures that exploit the multi-route structure
of the GVRP can be developed. We can see these improvements as a neighbourhood search
process, where each route has an associated neighborhood of adjacent routes.

The heuristics algorithms for the GVRP that we are going to describe are based on the
classification of the Van Breedam [16] of the improvement operations as string cross, string
exchange, string relocation and string mix.

a) String cross (SC): two strings of vertices are exchanged by crossing two edges of two
different routes.
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Figure 2 An example of a possible string cross. In the left side are presented the routes before
the exchange of the vertices strings and in the right side the routes after the exchange

In the above picture there were presented just the clusters of the string of vertices that are
exchanged in order to have a clearer figure. It is important to mention that we investigate all
the possible connections of the exchanged vertices within the clusters in order to get improved
routes, as is shown in Figure 2: the nodes belonging to the marked clusters after the exchange
may be diferrent.

b) String exchange (SE): two strings of at most r vertices are exchanged between two routes.
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Figure 3 An example of a possible string exchange

c) String relocation (SR): a string of at most k vertices is moved from one route to another
(k = 1 or k = 2).
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Figure 4 An example of a possible string relocation
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d) String mix (SM): consists in selecting the best move between the string exchange and
string relocation.

3.3 A local-global heuristic for GVRP

The last heuristic algorithm for solving the GVRP that we are going to describe is based
on local-global approach and it aims at distinguishing between global connections (connections
between clusters) and local connections (connections between nodes from different clusters). As
we will see, having a global collection of routes connecting the clusters it is rather easy to find
the corresponding best (w.r.t. cost minimization) solution of the GVRP.

There are several generalized collection of routes, i.e. routes containing exactly one node from
a cluster, corresponding to a global collection of routes. Between these generalized collection of
routes there exist one called the best generalized collection of routes (w.r.t. cost minimization)
that can be determined either by dynamic programming or by solving an linear integer program.

The local-global approach was applied succesfully to other generalized combinatorial opti-
mization problems such as: generalized minimum spanning tree problem (GMSTP) and general-
ized traveling salesman problem (GTSP) in order to provide exact exponential time algorithms,
strong mixed-integer programming formulations, solution procedures based on these mixed-
integer programming formulations and a heuristic algorithm for solving the GMSTP, see [?, 12].

Let G′ be the graph obtained from G after replacing all nodes of a cluster Vi with a supernode
representing Vi. We will call the graph G′ the global graph. For convenience, we identify Vi with
the supernode representing it. Edges of the graph G′ are defined between each pair of the graph
vertices V1, . . . , Vk.

In the next figure we present the collection of generalized routes corresponding to the a global
collection of routes.
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Figure 5 Example showing a generalized collection of routes corresponding to a global
collection of routes

Given a global route and a sequence (V0, Vk1 , ..., Vkp) in which the clusters are visited, we
want to find the best feasible route R∗ (w.r.t cost minimization), visiting the clusters according
to the given sequence. This can be done in polynomial time, by solving the following shortest
path problem as we will describe below.

We construct a layered network, denoted by LN, having p + 2 layers corresponding to the
clusters V0, Vk1 , ..., Vkp and in addition we duplicate the cluster V0, containing the vertex denoted
0 and representing the depot. The layered network contains in addition the extra node denoted
by 0′ for each. There is an arc (i, j) for each i ∈ Vkl and j ∈ Vkl+1

(l = 1, ..., p − 1), having the
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cost cij and an arc (i, h), i, h ∈ Vkl , (l = 2, ..., p) having cost cih. Moreover, there is an arc (i, 0′)
for each i ∈ Vkp having cost ci0′ .
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Figure 6 Example showing a route in the constructed layered network LN

We consider paths from 0 to 0′, that visits exactly one node from each cluster Vk1 , Vk2 , ..., Vkp ,
hence it gives a feasible route.

Conversely, every route visiting the clusters according to the sequence (V0, Vk1 , ..., Vkp) cor-
responds to a path in the layered network from 0 to 0′.

Therefore, it follows that the best (w.r.t cost minimization) route R∗ visiting the clusters in
a given sequence can be found by determining all the shortest paths from 0 to the corresponding
0′ with the property that visits exactly one node from each of the clusters (Vk1 , Vk2 , ..., Vkp).

The overall time complexity of the above procedure is O(m+ log n), where by m we denoted
the number of edges and n number of nodes.

Therefore, given a global collection of routes connecting the clusters we can find efficiently
the best corresponding collection of generalized routes. In order to provide global collections of
routes we may use any improvement heuristics for the classical VRP.

4 Conclusion and future work

The Generalized Vehicle Routing Problem is an extension of the Vehicle Routing Problem
(VRP) and consists in designing optimal delivery or collection routes, subject to capacity re-
strictions, from a given depot to a number of predefined, mutually exclusive and exhaustive
node-sets (clusters). The GVRP is an NP -hard problem and finds many interesting real-world
applications.

The aim of this paper was to present three classes of heuristic algorithms: constructive heuris-
tics including Nearest Neighbour and a Clarke-Wright based heuristic; improvement heuristics
including String Cross (SC), String Exchange (SE), String Relocation (SR) and String Mix (SM)
and a local-global heuristic for the GVRP.

Computational results are planned in order to assess the effectiveness of the proposed heuristic
algorithms.
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