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Abstract: In this paper we continue the study of fuzzy continuous mappings in fuzzy
normed linear spaces initiated by T. Bag and S.K. Samanta, as well as by I. Sadeqi
and F.S. Kia, in a more general settings. Firstly, we introduce the notion of uniformly
fuzzy continuous mapping and we establish the uniform continuity theorem in fuzzy
settings. Furthermore, the concept of fuzzy Lipschitzian mapping is introduced and
a fuzzy version for Banach’s contraction principle is obtained. Finally, a special
attention is given to various characterizations of fuzzy continuous linear operators.
Based on our results, classical principles of functional analysis (such as the uniform
boundedness principle, the open mapping theorem and the closed graph theorem) can
be extended in a more general fuzzy context.
Keywords: Fuzzy normed linear spaces; fuzzy continuous mapping; fuzzy bounded
linear operators.

1 Introduction and preliminaries

The concept of fuzzy set was introduced by L. Zadeh [14] in 1965. If X is a nonempty set,
a fuzzy set in X is a function µ from X into the unit interval [0, 1]. The classical union and
intersection of ordinary subsets of X can be extended by the following formulas, proposed by L.
Zadeh

(

∨

i∈I

µi

)

(x) = sup{µi(x) : i ∈ I} ,

(

∧

i∈I

µi

)

(x) = inf{µi(x) : i ∈ I} .

From here to the notion of fuzzy topological space, there was one more step to be taken.
Thus, in 1968, C.L. Chang [4] introduced the notion of fuzzy topological space. The definition
is a natural translation to fuzzy sets of the ordinary definition of topological space. Indeed, a
fuzzy topology is a family T , of fuzzy sets in X, such that T is closed with respect to arbitrary
union and finite intersection and every constant function belong to T .

One of the important problems concerning the fuzzy topological spaces is to obtain an ad-
equate notion of fuzzy metric space. Many authors have investigated this question and several
notions of fuzzy metric space have been defined and studied. We just mention the definition
given by I. Kramosil and J. Michálek [9] in 1975.

Definition 1. The pair (X,M) is said to be a fuzzy metric space if X is an arbitrary set and
M is a fuzzy set in X ×X × [0,∞) satisfying the following conditions:

(M1) M(x, y, 0) = 0, (∀)x, y ∈ X;

(M2) (∀)x, y ∈ X,x = y if and only if M(x, y, t) = 1 for all t > 0;

(M3) M(x, y, t) = M(y, x, t), (∀)x, y ∈ X, (∀)t > 0;

(M4) M(x, z, t+ s) ≥M(x, y, t) ∗M(y, z, s), (∀)x, y, z ∈ X, (∀)t, s > 0;
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(M5) (∀)x, y ∈ X,M(x, y, ·) : [0,∞)→ [0, 1] is left continuous and lim
t→∞

M(x, y, t) = 1 .

We note that, in previous definition, ∗ denotes a continuous t-norm (see [13]). The basic
examples of continuous t-norms are ∧, ·, ∗L, which are defined by a ∧ b = min{a, b}, a · b = ab

(usual multiplication in [0, 1]) and a ∗L b = max{a+ b− 1, 0} (the Lukasiewicz t-norm).

In studying fuzzy topological linear spaces, A.K. Katsaras [8], in 1984, first introduced the
notion of fuzzy norm on a linear space. Since then many mathematicians have introduced several
notions of fuzzy norm from different points of view. Thus, C. Felbin [6] in 1992 introduced an
idea of fuzzy norm on a linear space by assigning a fuzzy real number to each element of linear
space. In 1994, S.C. Cheng and J.N. Mordeson [5] introduced a concept of fuzzy norm on a linear
space whose associated metric is Kramosil and Michálek type. Following S.C. Cheng and J.N.
Mordeson, in 2003, T. Bag and S.K. Samanta [2] proposed another concept of fuzzy norm.

In this paper we continue the study of fuzzy continuous mappings in fuzzy normed linear
spaces initiated by T. Bag and S.K. Samanta [3], as well as by I. Sadeqi and F.S. Kia [12], in a
more general settings:

Definition 2. [10] Let X be a vector space over a field K (where K is R or C) and ∗ be a
continuous t-norm. A fuzzy set N in X × [0,∞) is called a fuzzy norm on X if it satisfies:

(N1) N(x, 0) = 0, (∀)x ∈ X;

(N2) [N(x, t) = 1, (∀)t > 0] if and only if x = 0;

(N3) N(λx, t) = N
(

x, t
|λ|

)

, (∀)x ∈ X, (∀)t ≥ 0, (∀)λ ∈ K
∗;

(N4) N(x+ y, t+ s) ≥ N(x, t) ∗N(y, s), (∀)x, y ∈ X, (∀)t, s ≥ 0;

(N5) (∀)x ∈ X, N(x, ·) is left continuous and lim
t→∞

N(x, t) = 1.

The triple (X,N, ∗) will be called fuzzy normed linear space (briefly FNLS).

Remark 3. a) T. Bag and S.K. Samanta [2], [3] gave a similar definition for ∗ = ∧, but in order
to obtain some important results they assumed that the fuzzy norm also satisfied the following
conditions:

(N6) N(x, t) > 0, (∀)t > 0⇒ x = 0 ;

(N7) (∀)x 6= 0, N(x, ·) is a continuous function and strictly increasing on the subset {t : 0 <

N(x, t) < 1} of R.

The results obtained by T. Bag and S.K. Samanta [3], as well as by I. Sadeqi and F.S. Kia [12],
can be found in this more general setting.
b) I. Goleţ [7], C. Alegre and S. Romaguera [1] also gave this definition in the context of real
vector spaces.
c) N(x, ·) is nondecreasing, (∀)x ∈ X.

Example 4. [2] Let X be a linear space and || · || be a norm on X. Let

N(x, t) :=

{

1 if |x| < t

0 if |x| ≥ t

Then (X,N,∧) is a FNLS. In particular, (C, N,∧) is a FNLS.
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Theorem 5. [10] Let (X,N, ∗) be a FNLS. For x ∈ X, r ∈ (0, 1), t > 0 we define the open ball

B(x, r, t) := {y ∈ X : N(x− y, t) > r} .

Then
TN := {T ⊂ X : x ∈ T iff (∃)t > 0, r ∈ (0, 1) : B(x, r, t) ⊆ T}

is a topology on X.
Moreover, if the t-norm ∗ satisfies sup

x∈(0,1)
x ∗ x = 1, then (X, TN ) is Hausdorff.

Theorem 6. [10] Let (X,N, ∗) be a FNLS. Then (X, TN ) is a metrizable
topological vector space.

Definition 7. [2] Let (X,N, ∗) be a FNLS and (xn) be a sequence in X.

1. The sequence (xn) is said to be convergent if (∃)x ∈ X such that

lim
n→∞

N(xn − x, t) = 1 , (∀)t > 0 .

In this case, x is called the limit of the sequence (xn) and we denote
lim
n→∞

xn = x or xn → x.

2. The sequence (xn) is called Cauchy sequence if

lim
n→∞

N(xn+p − xn, t) = 1 , (∀)t > 0, (∀)p ∈ N
∗ .

3. (X,N, ∗) is said to be complete if any Cauchy sequence in X is convergent to a point in
X. A complete FNLS will be called a fuzzy Banach space.

Theorem 8. Let (X,N, ∗) be a FNLS and

pα(x) := inf{t > 0 : N(x, t) > α}, α ∈ (0, 1) .

Then, for x ∈ X, s > 0, α ∈ (0, 1), we have:

pα(x) < s if and only if N(x, s) > α .

Proof: The proof is entirely the same as in [10], where there are considered FNLSs of type
(X,N,∧). ✷

The structure of the paper is as follows: in Section 2, we introduce the notion of uniformly
fuzzy continuous mapping and we establish the uniform continuity theorem in fuzzy settings. The
concept of fuzzy Lipschitzian mapping is introduced and a fuzzy version for Banach’s contraction
principle is obtained. In Section 3, special attention is given to various characterizations of fuzzy
continuous linear operators. Based on our results, classical principles of functional analysis (such
as the uniform boundedness principle, the open mapping theorem and the closed graph theorem)
can be extended in a more general fuzzy context.

Even if the structure of fuzzy F-spaces, recently introduced in [11], is much more complicated
than that of fuzzy Banach spaces, we intent to study, in a further paper, fuzzy continuous linear
operators on fuzzy F-spaces and to prove that the well-known principles of functional analysis
are valid in this context too.

In the following sections (X,N1, ∗1), (Y,N2, ∗2) will be FNLSs with the t-norms ∗1, ∗2 which
satisfy sup

x∈(0,1)
x ∗i x = 1, (∀)i = 1, 2.
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2 Fuzzy continuous mappings

Definition 9. [3] A mapping T : X → Y is said to be fuzzy continuous at x0 ∈ X, if

(∀)ε > 0, (∀)α ∈ (0, 1), (∃)δ = δ(ε, α, x0) > 0, (∃)β = β(ε, α, x0) ∈ (0, 1)

such that (∀)x ∈ X : N1(x− x0, δ) > β we have that N2(T (x)− T (x0), ε) > α .

If T is fuzzy continuous at each point of X, then T is called fuzzy continuous on X.

Theorem 10. [3] A mapping T : X → Y is fuzzy continuous at x0 ∈ X, if and only if
(∀)(xn) ⊆ X, xn → x0, we have that T (xn)→ T (x0).

Definition 11. A mapping T : X → Y is said to be uniformly fuzzy continuous on X, if

(∀)ε > 0, (∀)α ∈ (0, 1), (∃)δ = δ(ε, α) > 0, (∃)β = β(ε, α) ∈ (0, 1)

such that (∀)x, y ∈ X : N1(x− y, δ) > β we have that N2(T (x)− T (y), ε) > α .

Remark 12. If T is uniformly fuzzy continuous, then T is fuzzy continuous.

Theorem 13. (Uniform continuity theorem). Let (X,N1, ∗1) be a compact FNLS and
(Y,N2, ∗2) be a FNLS. If T : X → Y is a fuzzy continuous mapping, then T is uniformly fuzzy
continuous.

Proof: Let ε > 0 and α ∈ (0, 1).
As sup

x∈(0,1)
x ∗2 x = 1, then there exists α0 ∈ (0, 1) such that α0 ∗2 α0 > α.

As T : X → Y is a fuzzy continuous on X, for all x ∈ X, there exist δx = δ
(

ε
2 , α0, x

)

> 0,
βx = β

(

ε
2 , α0, x

)

∈ (0, 1) such that

(∀)y ∈ X : N1(x− y, δx) > βx ⇒ N2

(

T (x)− T (y),
ε

2

)

> α0 .

As sup
x∈(0,1)

x ∗1 x = 1, we can take γx > βx such that γx ∗1 γx > βx.

Since X is compact and
{

B
(

x, γx,
δx
2

)}

x∈X
is an open covering of X, there exist x1, x2, · · · , xn

in X such that X =
n
⋃

i=1
B

(

xi, γxi
,
δxi
2

)

. Let β = max{γxi
} and δ = min

{

δxi
2

}

, for i =

1, 2, · · · , n.
Let x, y ∈ X arbitrary, such that N1(x − y, δ) > β. As x ∈ X, there exists

i ∈ {1, 2, · · · , n} such that x ∈ B
(

xi, γxi
,
δxi
2

)

, namely N1

(

x− xi,
δxi
2

)

> γxi
. Hence

N1(x− xi, δxi
) ≥ N1

(

x− xi,
δxi

2

)

> γxi
> βxi

.

Thus
N2

(

T (x)− T (xi),
ε

2

)

> α0 .

We remark that

N1(y − xi, δxi
) ≥ N1

(

y − x,
δxi

2

)

∗1 N1

(

x− xi,
δxi

2

)

≥

≥ N1(y − x, δ) ∗1 N1

(

x− xi,
δxi

2

)

> β ∗1 γxi
≥ γxi

∗1 γxi
> βxi

.
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Thus N2

(

T (y)− T (xi),
ε
2

)

> α0.

In conclusion

N2(T (x)− T (y), ε) ≥ N2

(

T (x)− T (xi),
ε

2

)

∗2 N2

(

T (xi)− T (y),
ε

2

)

>

> α0 ∗2 α0 > α .

✷

Definition 14. A mapping T : X → Y is said to be fuzzy Lipschitzian on X if (∃)L > 0 such
that

N2(T (x)− T (y), t) ≥ N1

(

x− y,
t

L

)

, (∀)t > 0, (∀)x, y ∈ X .

If L < 1 we say that T is a fuzzy contraction.

Remark 15. It is clear that a fuzzy Lipschitzian mapping is necessarily fuzzy continuous.

Theorem 16. (Banach’s contraction principle). Let (X,N, ∗) be a fuzzy Banach space and
T : X → X be a fuzzy contraction. Then T has a unique fixed point z ∈ X and

lim
n→∞

Tn(x) = z, (∀)x ∈ X .

Proof: Let x ∈ X be arbitrary. Then {Tn(x)} is a Cauchy sequence. Indeed, for t > 0 and
p ∈ N

∗, we have

N(Tn+p(x)− Tn(x), t) ≥ N

(

Tn+p−1(x)− Tn−1(x),
t

L

)

≥

≥ · · · ≥ N

(

T p(x)− x,
t

Ln

)

.

As L ∈ (0, 1), we have that lim
n→∞

t
Ln =∞. Thus

lim
n→∞

N

(

T p(x)− x,
t

Ln

)

= 1 .

Hence lim
n→∞

N(Tn+p(x)− Tn(x), t) = 1, namely {Tn(x)} is a Cauchy sequence.

Since X is complete, we have that {Tn(x)} is a convergent sequence. Thus (∃)z ∈ X such
that lim

n→∞
Tn(x) = z. We note that

z = lim
n→∞

Tn+1(x) = lim
n→∞

T (Tn(x)) = T (z) .

Now we show the uniqueness. Suppose that there exist z, y ∈ X, z 6= y with the property
z = T (z), y = T (y). As z 6= y, there exists s > 0 such that N(z − y, s) = a < 1. Then, for all
n ∈ N, we have

a = N(y − z, s) = N(Tn(y)− Tn(z), s) ≥ N
(

y − z,
s

Ln

)

→ 1 .

Thus a = 1, which contradicts our assumption. ✷
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3 Fuzzy continuous linear operators

Theorem 17. Let T : X → Y be a linear operator. Then T is fuzzy continuous on X, if and
only if T is fuzzy continuous at a point x0 ∈ X.

Proof: ”⇒ ” It is obvious.
”⇐ ” Let y ∈ Y be arbitrary. We will show that T is fuzzy continuous at y. Let ε > 0, α ∈ (0, 1).
Since T is fuzzy continuous at x0 ∈ X, there exist δ > 0, β ∈ (0, 1) such that

(∀)x ∈ X : N1(x− x0, δ) > β ⇒ N2(T (x)− T (x0), ǫ) > α .

Replacing x by x+ x0 − y, we obtain that

(∀)x ∈ X : N1(x+ x0 − y − x0, δ) > β ⇒ N2(T (x+ x0 − y)− T (x0), ǫ) > α ,

namely
(∀)x ∈ X : N1(x− y, δ) > β ⇒ N2(T (x)− T (y), ǫ) > α .

Thus T is fuzzy continuous at y ∈ Y . As y is arbitrary, it follows that T is fuzzy continuous on
D(T ). ✷

Corollary 18. Let T : X → Y be a linear operator. Then T is fuzzy continuous on X, if and
only if

(∀)ε > 0, (∀)α ∈ (0, 1), (∃)δ = δ(ǫ, α) > 0, (∃)β = β(ǫ, α) ∈ (0, 1)such that

(∀)x ∈ X : N1(x, δ) > β we have that N2(T (x), ε) > α .

Theorem 19. A linear operator T : X → Y is fuzzy continuous on X, if and only if
(∀)α ∈ (0, 1), (∃)β = β(α) ∈ (0, 1), (∃)M = M(α) > 0 such that

(∀)t > 0, (∀)x ∈ X : N1(x, t) > β ⇒ N2(T (x),Mt) > α .

Proof: ” ⇐ ” Let ε > 0, α ∈ (0, 1) be arbitrary. Then there exist β = β(α) ∈ (0, 1),
M = M(α) > 0 such that

(∀)t > 0, (∀)x ∈ X : N1(x, t) > β ⇒ N2(T (x),Mt) > α .

In particular, for t = ε
M

, we obtain

N1

(

x,
ε

M

)

> β ⇒ N2(T (x), ε) > α .

Applying Corollary 18, for δ = ε
M

> 0, we obtain that T is fuzzy continuous on X.
”⇒ ” We suppose that (∃)α0 ∈ (0, 1) such that

(∀)β ∈ (0, 1), (∀)M > 0, (∃)t0 = t0(β,M) > 0, (∃)x0 = x0(β,M) ∈ X,

N1(x0, t0) > β and N2(T (x),Mt0) ≤ α0 .

The set V0 = {y ∈ Y : N2(y, t0) > α0} is an open neighborhood of 0Y . We will prove that,
for all neighborhood U of 0X , we have T (U) 6⊆ V0, which contradicts the fuzzy continuity of T
at 0X . As {B(0, β, s)}β∈(0,1),s>0 is a fundamental system of neighborhoods of 0X , it is enough
to show that for all β ∈ (0, 1), s > 0 we have T (B(0, β, s)) 6⊆ V0.

As M > 0 is arbitrary, we can chose s = t0
M

. We note that, for z0 =
1
M
x0 ∈ X, we have

N1

(

z0,
t0

M

)

= N1

(

1

M
x0,

t0

M

)

= N1(x0, t0) > β .



840 S. Nădăban

Hence z0 ∈ B
(

0, β, t0
M

)

. We will prove that T (z0) 6∈ V0, namely N2(T (z0), t0) ≤ α0. Indeed,

N2(T (z0), t0) = N2

(

T

(

1

M
x0

)

, t0

)

= N2(T (x0),Mt0) ≤ α0 .

✷

Corollary 20. A linear functional f : (X,N1, ∗)→ (C, N,∧) is fuzzy continuous, if and only if
(∃)β ∈ (0, 1), (∃)M > 0 such that

(∀)t > 0, (∀)x ∈ X,N1(x, t) > β ⇒ |f(x)| < Mt .

Proof: According to the previous theorem f is fuzzy continuous if and only if

(∀)α ∈ (0, 1), (∃)β ∈ (0, 1), (∃)M > 0 such that

(∀)t > 0, (∀)x ∈ X : N1(x, t) > β ⇒ N(f(x),Mt) > α .

But
N(f(x),Mt) > α⇔ N(f(x),Mt) = 1⇔ |f(x)| < Mt .

Hence (∃)β ∈ (0, 1), (∃)M > 0 such that

(∀)t > 0, (∀)x ∈ X,N1(x, t) > β ⇒ |f(x)| < Mt .

✷

Corollary 21. Let (X,N1, ∗1), (Y,N2, ∗2) be FNLSs and

pα(x) := inf{t > 0 : N1(x, t) > α}, α ∈ (0, 1) ,

qα(x) := inf{t > 0 : N2(x, t) > α}, α ∈ (0, 1) .

A linear operator T : X → Y is fuzzy continuous on X if and only if

(∀)α ∈ (0, 1), (∃)β = β(α) ∈ (0, 1), (∃)M = M(α) > 0

such that qα(Tx) ≤Mpβ(x) , (∀)x ∈ X .

Proof: According to the previous theorem,

(∀)α ∈ (0, 1), (∃)β = β(α) ∈ (0, 1), (∃)M = M(α) > 0 such that

(∀)t > 0, (∀)x ∈ X : N1(x, t) > β ⇒ N2(T (x),Mt) > α .

Thus, for x ∈ X, we have

{t > 0 : N1(x, t) > β} ⊆ {t > 0 : N2(Tx,Mt) > α} .

Hence
inf{t > 0 : N1(x, t) > β} ≥ inf{t > 0 : N2(Tx,Mt) > α} ,

namely inf{t > 0 : N1(x, t) > β} ≥ inf
{

t
M

> 0 : N2(Tx, t) > α
}

. Therefore

pβ(x) ≥
1

M
qα(Tx), ∀)x ∈ X .

✷
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Corollary 22. A linear functional f : (X,N1, ∗)→ (C, N,∧) is fuzzy continuous, if and only if
(∃)β ∈ (0, 1), (∃)M > 0 such that

|f(x)| ≤Mpβ(x), (∀)x ∈ X .

Remark 23. We note that a subset A of a topological linear space X is said to be bounded if
for every neighbourhood V of 0X , there exists a positive number k such that A ⊂ kV . A linear
operator T : X → Y is said to be bounded if T maps bounded sets into bounded sets. Based on
this remark the following definitions are natural.

Definition 24. [12] A subset A of X is called fuzzy bounded, if (∀)α ∈ (0, 1), (∃)tα > 0 such
that A ⊂ B(0, α, tα).

Definition 25. [12] A linear operator T : X → Y is said to be fuzzy bounded if T maps fuzzy
bounded sets of X into fuzzy bounded sets of Y .

We must note that the following result was established by I. Sadeqi and F.S. Kia [12] for
FNLSs of type (X,N,∧) which satisfy (N7). Since the proof is entirely the same as in [12], it is
omitted.

Theorem 26. Let T : X → Y be a linear operator. The following sentences are equivalent:

1. T is fuzzy continuous;

2. T is topological continuous;

3. T is fuzzy bounded;

4 Conclusion

As fuzzy continuity and topological continuity are equivalent and since FNLSs are metrizable
topological linear spaces, all results and theorems in topological linear spaces hold for FNLSs.
Particularly, we can obtain fuzzy versions for the classical principles of functional analysis (such
as the uniform boundedness principle, the open mapping theorem and the closed graph theorem).
This remark was made by I. Sadeqi and F.S. Kia [12] for FNLSs of type (X,N,∧). Based on our
results, these principles remain true without assuming (N7) as in [12].
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