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Abstract: This paper proposes an approximate optimization approach, called
QEAM, which combines a P system with active membranes and a quantum-inspired
evolutionary algorithm. QEAM uses the hierarchical arrangement of the compart-
ments and developmental rules of a P system with active membranes, and the objects
consisting of quantum-inspired bit individuals, a probabilistic observation and the
evolutionary rules designed with quantum-inspired gates to specify the membrane
algorithms. A large number of experiments carried out on benchmark instances of
satisfiability problem show that QEAM outperforms QEPS (quantum-inspired evolu-
tionary algorithm based on P systems) and its counterpart quantum-inspired evolu-
tionary algorithm.
Keywords: Membrane computing, active membranes, approximate optimization ap-
proach, quantum-inspired evolutionary algorithm; satisfiability problem.

1 Introduction

In the last decades, natural computing has been intensively studied and a wide range of
applications in computer science and many other areas have been produced. As a well established
branch of natural computing, membrane computing, using models called P systems, has made
a significant impact on the development of various disciplines [22], such as theoretical computer
science, biology, linguistics, etc. The first variants of P systems were proposed in 1998 by
G. Păun [19]. They represent a new distributed-parallel framework for designing cell-like or
tissue-like computing models, handling multisets of abstract objects in a compartmentalized
arrangement of membranes. The membrane structure delimits compartments in a hierarchical
or network manner. Objects are arranged as multisets and dispersed across these compartments.
Rules are usually associated to the regions enclosed by membranes and control the evolution
of objects inside in a maximally parallel way. The main characteristics of P systems are the
hierarchical or network architecture of membranes, type of rules (transformation, communication
etc.) and intrinsic parallelism, which are all very effective from a computational point of view
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and attractive and suitable for modelling various problems. Until now, P systems have been
developed principally from a mathematical and computational point of view, building a great
variety of computing models and studied for their computational power, complexity aspects and
potential solutions to NP-complete problems, and have been utilized for modelling real-world
problems in graphics, linguistics, biology. However, the issue of adapting P systems for solving
practical problems remains a fundamental aspect of the research in this field, and fortunately a
burgeoning interest in this respect for many researchers has been noticeable in the last years [7].
The application of P systems to such problems is still in a developmental phase [22], as compared
to evolutionary computation.

Inspired by the evolution in natural selection and molecular genetics, evolutionary algorithms
(EAs) have become the most successful metaheuristic search techniques [2]. The great success
of EAs in various applications, such as evolutionary optimization and machine learning, can be
attributed to two outstanding characteristics: practicability and robustness. EAs are regarded
as blind search methodologies without domain specific knowledge [23], suitable for a variety of
complex problems in real-world applications. As population-based search tools, EAs usually
sample multiple points of the search space in a single step and consequently are quite robust
with respect to the objective function landscapes containing many peaks. Developing potential
efficient solutions for specific problems is a challenging and attractive topic for researchers from a
wide range of areas. Quantum-inspired evolutionary algorithms (QIEAs), one of the three main
research areas related to the complex interaction between quantum computing and evolutionary
algorithms, are receiving renewed attention [28]. A QIEA is a new evolutionary algorithm for a
classical computer rather than for quantum hardware. QIEAs use quantum-inspired bits (Q-bits),
quantum-inspired gates (Q-gates) and observation processes to specify their structure and steps.
More specifically, Q-bits are applied to represent genotype individuals; Q-gates are employed
to operate on Q-bits to generate offspring; and the genotypes and phenotypes are linked by a
probabilistic observation process.

Even though P systems and EAs use different rules and computational strategies to han-
dle different objects, both of them are paradigms of natural computing and employed to solve
complex problems such as NP-complete problems [27,34]. P systems represent a suitable formal
framework for parallel-distributed computation and EAs are very effective for implementing dif-
ferent algorithms to solve many problems. Thus, the possible interplay between P systems and
EAs is very promising for further exploration and represents a fertile research field.

Being the successful instances of this interaction, membrane algorithms can be regarded as a
class of hybrid optimization algorithms using the concepts and principles of metaheuristic search
methodologies and the hierarchical or network structures of membranes and, to some extent,
rules of P systems. When a P system is considered as a parallel-distributed framework for meta-
heuristic search techniques, it is investigated in terms of optimization results and computation
framework, instead of computing power and efficiency. According to the investigations in the
literature, there are two main types of membrane algorithms in terms of membrane structures:
hierarchical and network. In [30], a tissue membrane system with a network structure was used
to appropriately organize five representative variants of differential evolution algorithms. Three
principal categories, nested membrane structure (NMS), one-level membrane structure (OLMS)
and hybrid membrane structure, were reported with respect to the membrane algorithms with
hierarchical membrane structures. In [16], a membrane algorithm with NMS was proposed by
using a genetic algorithm and a local search method to solve travelling salesman problems. This
kind of membrane algorithms was also applied to solve the min storage problem [13], DNA
sequence design problem [24, 25] and the proton exchange membrane fuel cell model parame-
ter estimation problems [26]. In [27], a membrane algorithm integrating OLMS with a QIEA,
called QEPS, was proposed to solve knapsack problems and the experiment-based comparisons
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between OLMS and NMS were drawn, implying that the choice of the membrane structure is
very important for membrane algorithms. This membrane structure was also combined with a
QIEA and tabu search [32], differential evolution [3], ant colony optimization [29], particle swarm
optimization [33] and multiple QIEA components to solve radar emitter signal time-frequency
atom decomposition, numerical optimization problems, travelling salesman problems, broadcast-
ing problems in P systems and image processing, respectively. In [11], a dynamic multi-objective
optimization algorithm using a membrane system with a hybrid structure was developed to
design a controller for a time-varying unstable plant. The dynamic behavior analysis in [31]
indicates that the membrane algorithm, QEPS, has a stronger capability to balance exploration
and exploitation than its counterpart approach, QIEA. It is worth pointing out that Păun has
made a clear claim that membrane algorithms represent a research directions with a well-defined
practical use [22], and therefore further studies are very necessary to prove the use of P systems
for solving real-world applications.

P systems with active membranes can produce an exponential growth of membranes and
consequently can solve a class of NP-complete problems, such as the satisfiability (SAT) problem
[1,20] and the knapsack problem [18], in a linear or polynomial time. The two types of complete
problems were discussed in [1,18,20] and in many other places from a mathematical perspective.
To the best of our knowledge, no evolutionary algorithm using P system with active membranes
has been devised to approximately solve the two aforementioned kinds of problems.

This paper proposes an approximate algorithm combining a P system with active membranes
model and a QIEA, called QEAM. This approach is based on the hierarchical arrangement of the
compartments and developmental rules (e.g., membrane separation, merging, transformation/
communication-like rules) of a P system with active membranes model, and the objects consisting
of Q-bit individuals, a probabilistic observation and the evolutionary rules designed with Q-
gates to specify the membrane algorithms. In the experiments, the application of QEPS to SAT
problems is first discussed, and then QEAM is tested on 65 benchmark SAT problems. Extensive
experiments show that QEAM achieves much better results than QEPS and its counterpart
QIEA. Also, the parametric and non-parametric tests show significant differences.

2 QEAM

In this section, we start by introducing some concepts related to P systems with active
membranes and QIEAs and then describe in detail the proposed QEAM algorithm.

2.1 P systems with active membranes

In this subsection, we give a brief description of P systems with active membranes without
polarizations due to [20] and [17], where more details can also be found.

A membrane structure is a rooted tree represented by a Venn diagram and is identified by a
string of correctly matching parentheses, with a unique external pair of parentheses; this external
pair of parentheses corresponds to the external membrane, called the skin. A membrane without
any another membrane inside (the leaves of the tree) is said to be elementary. For example, the
structure in Fig. 1 contains 8 membranes; membranes 3, 5, 6 and 8 are elementary. The string
of parentheses identifying this structure is µ = [1[2[5]5[6]6]2[3]3[4[7[8]8]7]4]1.

All membranes are labelled; here we have used the numbers from 1 to 8. We say that the
number of membranes is the degree of the membrane structure, while the height of the tree
associated in the usual way with the structure is its depth. In the example above we have a
membrane structure of degree 8 and of depth 4.
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The membranes delimit regions, precisely identified by the membranes (the region of a mem-
brane is delimited by the membrane and all membranes placed immediately inside it, if any such
a membrane exists). In these regions we place objects, which are represented by symbols of an
alphabet. Several copies of the same object can be present in a region, so we work with multisets
of objects. A multiset over an alphabet V is represented by a string over V , together with all
its permutations: the number of occurrences of a symbol a ∈ V in a string x ∈ V ∗ (V ∗ is the set
of all strings over V ; the empty string is denoted by λ) is denoted by |x|a and it represents the
multiplicity of the object a in the multiset represented by x.

A polarizationless P system with active membranes is a construct

Π = (V, T,H, µ,w1, . . . , wm, R),

where

1. m ≥ 1 (the initial degree of the system);

2. V is an alphabet (the working alphabet of the system);

3. T ⊆ V (the terminal alphabet);

4. H is a finite set of labels for membranes;

5. µ is a membrane structure consisting of m membranes, labelled (not necessarily in a one-
to-one manner) with elements of H;

6. w1, . . . , wm, are strings over V , describing the multisets of objects placed in the m regions
of µ;

7. R is a finite set of developmental rules, of the following forms:

(a) [ha → v]h, for h ∈ H, a ∈ V, v ∈ V ∗; (object evolution rules, associated with mem-
branes and depending on the label, but not directly involving the membranes, in the
sense that the membranes are neither taking part in the application of these rules nor
are they modified by them);

(b) a[h]h → [hb]h, for h ∈ H, a, b ∈ V ; (communication rules; an object is introduced in
the membrane, possibly modified during this process);

(c) [ha]h → [h]hb, for h ∈ H, a, b ∈ V ; (communication rules; an object is sent out of the
membrane, possibly modified during this process);

(d) [h]h[h]h → [h]h, for h ∈ H; (merging rules for elementary membranes; in reaction of
two membranes, they are merged into a single membrane; the objects of the former
membranes are put together in the new membrane);

(e) [hW ]h → [hU ]h[hW − U ]h, for h ∈ H,U ⊂ W ; (separation rules for elementary
membranes; the membrane is separated into two membranes with the same labels;
the objects from U are placed in the first membrane, those from W −U are placed in
the other membrane);

For a detailed description on how to use these rules, refer to [17,20]. It is worth pointing out
that these rules are used in the non-deterministic maximally parallel manner, i.e., in any given
step, one or more rules of type (a), such that no unallocated object to rules can be allocated to
any rule, and/or at most one rule of types (b)-(e) can be applied to each membrane. In this way,
we get transition from a configuration of the system to the next configuration. A sequence of
transitions forms a computation. A computation is halting if no other rules can be employed in
its last configuration.
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Figure 1: A membrane structure

the beginning. 

Begin 

1t

(i) Initialize Q(t)

While (not termination condition) do

(ii) Make P(t) by observing the states of Q(t)

(iii) Evaluate P(t)

(iv) Update Q(t) using Q-gates 

(v) Store the best solutions among P(t)

1t t

End

End

Fig. 2.  Pseudocode algorithm for QIEA [13]

Figure 2: Pseudocode algorithm for QIEA [10]

2.2 Quantum-inspired evolutionary algorithms

The interaction of quantum computing and evolutionary algorithms has produced three re-
search avenues: evolutionary-designed quantum algorithms using evolutionary algorithms to de-
sign new quantum algorithms, quantum evolutionary algorithms implementing evolutionary al-
gorithms in a quantum computing environment and QIEAs [28]. QIEA is employed to describe
the computational methods using concepts and principles of quantum computing for solving var-
ious problems in the context of a classical computer [14]. Based on the concepts and principles of
quantum computing, such as quantum bit (qubit), quantum gate and superposition, a QIEA is
developed as a novel evolutionary algorithm for a classical computer. Narayanan and Moore [15]
introduced a preliminary idea of a QIEA and Han and Kim [10] proposed its practical algorithm.
A QIEA is characterized by a Q-bit representation, a probabilistic observation and a Q-gate
evolutionary rule. In recent years, QIEAs have become a promising and rapidly growing branch
of evolutionary computation.

In QIEAs, a Q-bit is defined by a pair of complex numbers (α, β) as [α β]T , where |α|2 and
|β|2 are probabilities that the observation of the Q-bit will render a ’0’ or ’1’ state. Normalization
requires that |α|2 + |β|2 = 1. Note that QIEAs just need real numbers for amplitudes. Besides
’0’ and ’1’ states, a Q-bit can also be in a superposition of the two states. A Q-bit individual is
represented as a string of l Q-bits [

α1|α2| · · · |αl

β1|β2| · · · |βl

]
, (1)

where |αi|2 + |βi|2 = 1 (i = 1, 2, · · · , l). A Q-gate in a QIEA is defined as a variation operator
for updating the Q-bit individuals such as to guarantee that they also satisfy the normalization
condition |α|2 + |β|2 = 1 [10].

The basic pseudocode algorithm for a QIEA is shown in Fig. 2 and the description for each
step is as follows.

1. In the "initialize Q(t)" step, a population Q(1) with n Q-bit individuals is generated,
Q(t)={qt1, qt2, · · · , qtn}, at generation t, where qti (i = 1, 2, · · · , n) is an arbitrary individual
in Q(t), which is represented as

qti =

[
αt
i1|αt

i2| · · · |αt
il

βt
i1|βt

i2| · · · |βt
il

]
, (2)

where l is the number of Q-bits, i.e., the string length of the Q-bit individual. In the
initial population, that is when t = 1, we have αt

ij = βt
ij = 1/

√
2 for all i = 1, 2, · · · , n
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and j = 1, 2, · · · , l. This means that all possible states are superposed with the same
probability at the beginning.

2. By observing the states Q(t), binary solutions in P (t), where P (t)={xt
1, xt

2, · · · ,xt
n},

are produced at step t. According to the current probability, either |αt
ij |2 or |βt

ij |2 of qti ,
i = 1, 2, · · · , n, j = 1, 2, · · · , l, a classical bit 0 or 1 is generated. Thus, l classical bits can
construct a binary solution xt

i (i = 1, 2, · · · , n).

3. The fitness value for each binary solution xt
i (i = 1, 2, · · · , n) is calculated by using an

evaluation function.

4. In this step, all the Q-bit individuals in Q(t) are updated by applying Q-gates. To be
specific, the jth Q-bit in the ith Q-bit individual qti , j = 1, 2, · · · , l, i = 1, 2, · · · , n, is
updated by applying the current Q-gate Gt

ij(θ). As usual, QIEAs use a quantum rotation
gate as a Q-gate; this is given by

Gt
ij(θ) =

[
cos θtij − sin θtij
sin θtij cos θtij

]
, (3)

where θtij is an adjustable Q-gate rotation angle.

5. The best solutions among P (t) are selected and stored into b(t).

In QIEAs, the Q-bit representation, which can describe simultaneously multiple genotype
states using a linear superposition of states in a probabilistic way, makes the algorithm rather
good with respect to population diversity. Q-gate evolutionary rules are executed in the Q-
bit probability space to avoid the selection pressure problem of conventional genetic algorithms
with selection, crossover and mutation operators. As compared with local search methods and
conventional genetic algorithms, a QIEA has good balance between exploration and exploitation
so as to obtain stronger global search capability and better convergence. Furthermore, a QIEA is
able to exploit the search space for a global solution with a small number of individuals, even with
one individual; Q-gate evolutionary rules, which are only related to searching the best solution,
are easy to implement in a parallel distributed structure because little information needs to be
transmitted and exchanged.

2.3 QEAM

This section will introduce the membrane algorithm, QEAM, combining P systems with active
membranes and QIEAs. QEAM uses a dynamic P systems-like framework, which is initially
randomly produced and then may be changed in the process of evolution. This framework directly
uses some of the elements of a P system with active membranes, whereas others are slightly
adapted for this evolutionary algorithm. The objects employed will be organized in multisets of
special strings built either over the set of Q-bits or {0, 1}. The rules will be responsible to make
the system evolve and select the best fit Q-bit individuals.

More precisely, the dynamic P system-like framework will consist of:

1. a dynamic structure [0[1]1, [2]2, · · · , [m]m]0 with m regions contained in the skin membrane,
denoted by 0, where m is a number varied during the evolution process;

2. an alphabet that consists of all possible Q-bits and the set {0, 1};

3. a set of terminal symbols, T = {0, 1};
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4. initial multisets
w0 = λ, w1 = q1q2 · · · qn1 , w2 = qn1+1qn1+2 · · · qn2 , · · · , wm = qn(m−1)+1qn(m−1)+2 · · · qnm ,
where qi, 1 ≤ i ≤ n, is a Q-bit individual; nj , 1 ≤ j ≤ m, is the number of individuals in
wj ;

∑m
j=1 nj = n, where n is the total number of individuals in this computation;

5. rules include the types of (a)-(e) in P systems with active membranes and their use will be
given in the following description.

In what follows, we summarize the steps of QEAM by using a pseudocode notation, shown
in Fig. 3, to help presenting the membrane algorithm.

 Begin 

Input n, gmax, tmax 

1t   

(i) Initialize the membrane structure (m t elementary membranes) and objects; 

(ii) While (not termination condition) do 

(iii)    Produce g (t); 

(iv)    Perform object evolution rule (a) in elementary membranes; 

(v)    Perform communication rule (c); 

(vi)    Perform object evolution rule (a) in the skin membranes; 

1t t !  

(vii)    Determine the number mt+1 of elementary membranes; 

If (mt+1< m t) 

(viii)      Perform membrane merging rule (d); 

Else if (mt+1> m t) 

(ix)      Perform membrane separation rule (e); 

End 

(x) Perform communication rule (b); 

End 

Output: the best individual 

End 

Figure 3: Pseudocode algorithm for QEAM.

1. In the initialization of QEAM, a one level membrane structure [0[1]1, [2]2, · · · , [m]m]0 con-
sisting of a skin membrane denoted by 0 and m elementary membranes delimiting m
regions inside the skin membrane is constructed as the membrane structure at iteration
t = 1, where m is a random number ranged from 1 to n, where n is the number of Q-bit
individuals. Each Q-bit individual forms an object. Thus, n objects are randomly scat-
tered across the m elementary membranes in a non-deterministic way to make sure that
each elementary membrane contains at least one object. So the number of objects in each
elementary membrane varies from 1 to n−m+ 1.

2. The termination condition for QEAM could be a prescribed number of maximal iterations
or the algorithm searches the optimal or close-to-optimal solution.

3. This step determines the numbers g(t) = (g1, g2 . . . , gm), of evolutionary generations for
independently performing object evolution rule (a) in the m elementary membranes, where
gi (i = 1, 2, . . . ,m) for the ith elementary membrane is generated randomly between 1 and
a certain integer number gmax.

4. The steps (ii) to (v) of the QIEA shown in Fig. 2 are performed independently in each
elementary membrane to evolve the objects inside. The termination condition for the ith
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Begin 

If 
2

[0,1)random

Then 0x

Else 1x

End

Figure 4: Observation process in QIEA

Begin

0t ;

Initialize tabu search; 

While (
max

t t ) do

1t t ;

Search the neighborhood; 

Evaluate candidate solutions;

Update tabu list.   

End

End

Figure 5: Pseudocode algorithm for tabu search

elementary membrane is the maximal number gi(i = 1, 2, · · · ,m) of evolutionary genera-
tions. It is worth pointing out that the observation process in QIEAs, illustrated in Fig.
4, is applied to build a connection between a Q-bit [α β]T and a classical bit and hence to
build a link between Q-bit individuals and binary solutions. The Q-gate update procedure[

α′
β′

]
= G(θ)

[
α

β

]
(4)

is used to transform a current Q-bit [α β]T into the corresponding Q-bit [α′ β′]T at the next
generation. The rotation angle θ in the Q-gate G(θ) in (4) is defined as θ = s(α, β) ·∆θ,
where s(α, β) and ∆θ can be obtained from the lookup table in [10].

5. The communication rule is employed to send the best binary solution in each elemen-
tary membrane out to the skin membrane. This step is helpful to exchange information
among the objects in the elementary membranes and the skin membrane because the QIEA
employs Q-gates, which are related to only the best individual searched, to generate the
offspring. After this step there are m binary solutions in total in the skin membrane.

6. In the skin membrane, a local search, tabu search [8, 12], is performed on the best binary
solution selected from the m binary solutions, which are sent from the m elementary
membranes (see Step (v)). The pseudocode algorithm for tabu search is shown in Fig. 5.
In the "Initialize tabu search" step, an empty tabu list is constructed and tabu length is
set to a value. At each iteration, the neighborhood of the best binary solution in the skin
membrane is explored to obtain candidate solutions. Next, the candidate solutions are
evaluated by using the fitness function and the best of them is selected to update the tabu
list.

7. The number mt+1 of elementary membranes at iteration t+1 is produced randomly between
1 and n, which will directly determine the membrane structure at the next iteration.

8. If mt+1 < mt, the (mt−mt+1) elementary membranes will be merged into the mt+1 elemen-
tary membranes. The merging process is shown in Fig. 6, where EM represents elementary
membranes. In each merging operation, we first choose any two arbitary elementary mem-
branes i and j from M elementary membranes, i.e., 1 ≤ i, j ≤ M and i ̸= j; and then we
merge the elementary membranes i and j into a single membrane and put the objects in
the elementary membranes i and j into the merged membrane. The initial value of M is
mt. Thus, multiple membranes may be merged into a single membrane. So this rule is a
multi-merging one.
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 Begin 

t
M m ; 

While ( 1t
M m

!
" ) do 

   Choose any two arbitary elementary membranes; 

   Perform the merging rule (d); 

   1M M # ; 

End 

End 
 

 

d

Figure 6: Merging process of EMs

 Begin 

t
M m ; 

While (
1t

M m
!

$ ) do 

   Choose any one elementary membrane; 

While (|W|<2) do 

      Choose any one elementary membrane; 

End 

Perform the separation rule (e); 

   1M M ! ; 

End 

End  

 

Figure 7: Separation process of EMs

9. If mt+1 > mt, the (mt+1 − mt) elementary membranes will be separated into two mem-
branes. The separation process is illustrated in Fig. 7, in which |W | is the number of
objects in the pre-separation membrane. We choose any one elementary membrane i which
has at least two objects from M elementary membranes, i.e., 1 ≤ i ≤ M . The initial value
of M is mt. When the separation rule is performed, |U | (|U | < |W |) objects are placed in
the first membrane and the |W | − |U | objects are placed in the other membrane. Thus, a
single membrane may be divided into several membranes. So, this rule is a multi-separation
one.

10. By performing the communication rule (b) in the skin membrane, this step sends the fittest
binary solution to each elementary membrane for the further evolution steps.

3 Experimental results

To test the performances of the presented algorithm, QEAM, we will use the satisfiability
problem, which is a well-known NP-complete problem, to conduct the experiments. We start
from the description of the satisfiability problem, and then turn to use QIEAs and QEPS as
benchmark algorithms to solve 65 representative instances of the satisfiability problem. Finally,
QEAM is tested on the same instance of the satisfiability problem to draw conclusions.

3.1 Satisfiability problem

The satisfiability problem (SAT) is a fundamentally paradigmatic problem in artificial in-
telligence applications, automated reasoning, mathematical logic, and related research areas [5].
SAT can be described as follows: given a Boolean formula in conjunctive normal form (CNF),
determine whether or not it is satisfiable, that is, whether there exists an assignment to its vari-
ables on which it evaluates to true, i.e., a SAT instance is to search a variable assignment x so
that a Boolean formula f(x) becomes true, where x is a set of Boolean variables x1, x2, · · · , xn,
i.e., xi ∈ {0, 1}, i = 1, 2, · · · , n and the propositional formula f(x) is in a conjunctive normal
form, i.e.,

f(x) = c1(x) ∧ c2(x) ∧ · · · ∧ cm(x), (5)

where each clause cj(x), j = 1, 2, · · · ,m, is a disjunction of literals, and a literal is a variable or its
negation [9]. A SAT instance is called satisfiable if such x exists, and unsatisfiable otherwise. In
this paper only 3-SAT problems, in which each clause has exactly three literals, will be considered
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because a number of other problems, such as the travelling salesman problem and the n-queens
problem, can be reformulated with respect to 3-SAT problems. In [4] it is shown that 3-SAT
problem is NP-complete.

In membrane computing, various types of P systems with membrane division are frequently
investigated from a mathematical point of view to obtain an exponential working space in a
linear time to solve the SAT problem [1, 20]. This paper will use an approximate algorithm to
solve the SAT problem, in which the number of clauses that are not satisfied by the variable
assignment x is considered as the evaluation function.

3.2 Results of QEPS and QIEA

According to the study in [27], the number of elementary membranes has a significant impact
on the QEPS performances. So we first focus on how to set the number of elementary membranes
in an empirical way. Ten benchmark 3-SAT problems1, each of which has 20 Boolean variables
and 91 clauses, are applied to conduct the experiments. The fitness function is the number
of clauses that are not satisfied by the variable assignment. The population size n is set to
50. The values of 2, 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50, for the number m of elementary
membranes, are used in the experiments. According to previous investigations regarding the effect
of the number gi(i = 1, 2, . . . ,m) of iterations on the QEPS performances [27], the parameter
gi(i = 1, 2, . . . ,m) is set to a uniformly random integer ranged from 1 to 10. The algorithm stops
when either 2.75× 106 evaluation steps are made or the SAT problem solution is found, i.e., the
minimal fitness value 0 is attained. The performances of the above 11 cases are evaluated by
using the successful rate of 30 independent runs (the percentage of the runs making the SAT
problem satisfiable) and the average number of evaluations to solutions (AES) over the successful
runs. The experimental results are listed in Fig. 8 and Fig. 9, which illustrate that the successful
rates and the AES vary with the number of elementary membranes.

As shown in Fig. 8 and Fig. 9, the successful rates and the AES show a broad range of
variability with respect to the number of different elementary membranes; this indicates that
the number of elementary membranes has a significant impact on the QEPS performances. In
order to obtain a balance between the successful rates and the AES, the number of elementary
membranes could be fixed at 15.

1SATLIB - The Satisfiability Library, http://www.satlib.org/
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QIEA is also applied to conduct the experiments on the 10 SAT problems. In these experi-
ments, QIEA employs the same population size and stopping criteria as the QEPS. The statistical
results of 30 independent runs for each problem are listed in Table 1. The best experimental
results of QEPS are also shown in Table 1, where each of which has 20 Boolean variables and 91
clauses; SR and AES represent successful rates and average number of evaluations to solutions,
respectively.

To perform convincing comparisons between QIEA, QEPS and QEAM, additional fifty-five
3-SAT benchmark problems are employed to carry out experiments. Both QEPS and QIEA use
50 individuals as a population, the prescribed number of 2.75 × 106 evaluations to solutions as
the stopping criterion and the number of clauses that are not satisfied by the variable assignment
as the fitness function. In QEPS, the parameter gi(i = 1, 2, . . . ,m) is set to a uniformly random
integer ranged from 1 to 10, and the number of elementary membranes is assigned to 15. The
performances of the two algorithms are evaluated by using the following criteria: the mean of
the solutions over 15 runs and their standard deviations. It is worth pointing out that the
experiments are very time-consuming and therefore only 15 independent runs are performed for
each SAT problem. The number of Boolean variables, the number of clauses in each Boolean
formula and the experimental results are provided in Table 2.

Table 1: Comparisons of QIEA, QEPS and QEAM on 10 SAT problems
QIEA QEPS QEAM

Problems SR(%) AES SR(%) AES SR(%) AES
SAT1 77 572750 100 528850 100 220804
SAT2 70 496700 90 701200 100 300468
SAT3 53 638250 73 949400 97 279174
SAT4 100 218250 100 90300 100 59978
SAT5 87 575900 87 582300 100 179445
SAT6 57 469650 83 701700 100 336728
SAT7 53 1137750 67 907300 93 527795
SAT8 27 1120300 50 410300 100 354903
SAT9 87 684800 100 405450 100 128633
SAT10 93 281050 100 572750 100 115876

3.3 Results of QEAM

In the experiments for testing QEAM performance, the population size and the prescribed
number of evaluations of solutions as the stopping criterion are set to 50 and 2.75 × 106, re-
spectively, which are the same as those in QIEA and QEPS. QEAM applies the same gmax as
QEPS. Additionally, the tabu length and tmax in QEAM are 5 and 100, respectively. For each
of the first 10 benchmark 3-SAT problems shown in Table 2, we performed 30 independent runs
and recorded the successful rate and the AES over successful runs. The experimental results are
provided in Table 1. The QEAM performance is further investigated by using the remaining 55
3-SAT benchmark problems. We record the average solution and the standard deviations over
15 runs for each of them. The experimental results are listed in Table 2, where each of the first
ten, the second ten, the third ten, the fourth ten, the fifth ten and the last five problems has
50, 75, 100, 125, 150 and 250 Boolean variables and 218, 325, 430, 538, 645 and 1065 clauses,
respectively; Mean and Std represent the mean of the best solutions and the standard deviation
of the best solutions, respectively; (+) represents significant difference.
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Table 2: Comparisons of QIEA, QEPS and QEAM using 55 in-
stances of the SAT problem (to be continued).

QIEA QEPS QEAM QEAMvs.QIEA QEAMvs.QEPS
SAT Mean Std Mean Std Mean Std t-test Imp.(%) t-test Imp.(%)

1 7.67 0.82 6.60 1.18 0.93 0.26 5.23e-23(+) +87.87 5.30e-17(+) +85.91

2 8.27 2.12 7.40 1.12 1.53 0.64 2.32e-12(+) +81.50 1.13e-16(+) +79.32

3 7.40 1.40 6.27 0.88 1.00 0.53 5.90e-16(+) +86.49 5.64e-18(+) +84.05

4 7.87 1.19 6.33 0.98 1.00 0.38 7.31e-19(+) +87.29 5.74e-18(+) +84.20

5 7.13 1.41 6.20 0.86 0.07 0.26 1.30e-17(+) +99.02 2.50e-21(+) +98.87

6 7.27 0.80 5.93 0.80 0.20 0.41 5.39e-23(+) +97.25 1.53e-20(+) +96.63

7 7.73 1.16 6.40 1.18 1.07 0.46 1.73e-18(+) +86.16 8.26e-16(+) +83.28

8 8.73 0.70 7.67 1.18 1.53 0.83 5.99e-21(+) +82.47 6.01e-16(+) +80.05

9 7.87 1.13 6.87 1.19 1.47 0.64 1.27e-17(+) +81.32 2.84e-15(+) +78.60

10 8.33 0.82 6.93 0.88 1.07 0.59 5.74e-22(+) +87.15 7.33e-19(+) +84.56

11 16.67 1.11 15.40 0.99 2.00 0.93 5.05e-26(+) +88.00 9.32e-26(+) +87.01

12 15.07 1.49 14.60 0.74 1.47 0.74 1.76e-23(+) +90.25 1.38e-28(+) +89.93

13 16.33 0.82 14.80 2.01 2.07 0.88 6.61e-28(+) +87.32 1.84e-19(+) +86.01

14 14.00 1.20 12.87 1.60 1.87 0.64 1.53e-24(+) +86.64 1.41e-20(+) +85.47

15 15.07 1.03 14.87 0.92 1.60 1.06 9.13e-25(+) +89.38 3.01e-25(+) +89.24

16 16.13 1.06 14.87 1.19 2.20 0.68 4.29e-27(+) +86.36 5.80e-25(+) +85.21

17 15.33 1.40 14.53 1.64 1.67 0.90 1.54e-23(+) +89.11 2.00e-21(+) +88.51

18 15.73 1.44 14.53 1.51 2.20 0.86 2.54e-23(+) +86.01 8.03e-22(+) +84.86

19 14.93 1.49 13.80 1.97 1.80 0.41 6.02e-24(+) +87.94 9.25e-20(+) +86.96

20 14.40 1.45 13.93 1.22 2.00 0.76 1.48e-22(+) +86.11 1.19e-23(+) +85.64

21 24.53 1.81 22.93 1.39 3.0 0.93 1.44e-26(+) +87.77 5.29e-28(+) +86.92

22 24.20 1.21 22.80 2.14 3.33 0.62 4.78e-31(+) +86.24 3.08e-24(+) +85.39

23 24.27 1.28 22.93 1.79 4.20 0.94 1.15e-28(+) +82.69 6.05e-25(+) +81.68

24 23.40 1.68 22.80 1.08 3.53 0.92 2.63e-26(+) +84.91 1.51e-29(+) +84.52
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Table 2 Comparisons of QIEA, QEPS and QEAM (continued)
QIEA QEPS QEAM QEAM vs. QIEA QEAM vs. QEPS

SAT Mean Std Mean Std Mean Std t-test Imp.(%) t-test Imp.(%)

25 24.27 1.22 22.80 1.47 3.73 0.88 1.45e-29(+) +84.63 4.13e-27(+) +83.64

26 24.00 1.51 22.47 1.60 3.60 0.74 3.53e-28(+) +85.00 1.06e-26(+) +83.98

27 24.13 1.06 23.40 1.35 3.87 0.74 2.99e-31(+) +83.96 1.08e-28(+) +83.46

28 24.00 1.85 23.40 1.30 3.73 0.80 6.33e-26(+) +84.46 6.40e-29(+) +84.06

29 25.13 1.68 24.13 2.00 4.27 1.28 1.06e-25(+) +83.01 9.18e-24(+) +82.30

30 22.93 2.15 22.27 1.98 3.40 0.74 4.81e-24(+) +85.17 1.64e-24(+) +84.73

31 33.53 1.96 32.87 1.51 5.67 0.90 6.07e-29(+) +83.09 3.87e-31(+) +82.75

32 33.80 1.90 32.07 2.12 5.40 1.06 6.07e-29(+) +84.02 2.76e-27(+) +83.16

33 34.47 1.81 33.73 1.33 6.07 1.33 4.37e-28(+) +82.39 1.85e-30(+) +82.00

34 34.06 1.84 33.27 2.34 5.13 0.74 1.13e-30(+) +84.94 1.78e-27(+) +84.58

35 34.67 1.76 33.60 2.20 5.20 1.32 2.25e-29(+) +85.00 4.32e-27(+) +84.52

36 34.80 2.21 33.93 1.44 6.20 1.47 9.51e-27(+) +82.18 1.93e-29(+) +81.73

37 32.80 2.86 32.93 1.33 5.27 1.28 2.49e-24(+) +83.93 1.05e-30(+) +84.00

38 32.80 1.97 32.47 1.19 5.27 1.10 3.02e-28(+) +83.93 4.14e-32(+) +83.77

39 34.20 2.08 33.40 1.76 5.67 0.98 1.78e-28(+) +83.42 1.09e-29(+) +83.02

40 33.93 1.67 33.20 2.34 5.67 0.98 1.96e-30(+) +83.29 7.19e-27(+) +82.92

41 42.60 1.50 41.20 2.01 6.87 1.13 1.29e-33(+) +83.87 1.13e-30(+) +83.33

42 43.07 1.67 40.00 2.67 5.40 0.91 4.16e-34(+) +87.46 2.66e-28(+) +86.50

43 41.73 1.71 41.53 1.06 6.27 1.75 2.55e-30(+) +84.97 2.08e-32(+) +84.90

44 42.80 3.28 41.07 1.94 6.47 1.25 2.73e-26(+) +84.88 1.01e-30(+) +84.25

45 43.93 1.67 42.60 2.64 7.13 1.06 2.38e-33(+) +83.77 1.66e-28(+) +83.26

46 43.00 3.23 42.07 1.62 7.60 1.30 4.55e-26(+) +82.33 6.09e-32(+) +81.93

47 43.20 2.04 42.73 1.87 7.87 1.30 2.12e-30(+) +81.78 5.60e-31(+) +81.58

48 44.27 2.19 43.60 2.32 7.47 1.06 7.50e-31(+) +83.13 4.97e-30(+) +82.87

49 44.67 2.26 43.53 2.10 8.93 1.67 9.21e-29(+) +80.01 6.37e-29(+) +79.49
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Table 2 Comparisons of QIEA, QEPS and QEAM (continued)
QIEA QEPS QEAM QEAM vs. QIEA QEAM vs. QEPS

SAT Mean Std Mean Std Mean Std t-test Imp.(%) t-test Imp.(%)

50 43.13 1.55 41.47 2.50 6.53 0.99 3.87e-34(+) +84.86 5.45e-29(+) +84.25

51 83.07 3.45 81.27 2.91 12.93 1.33 1.48e-33(+) +84.43 5.51e-35(+) +84.09

52 83.40 3.44 82.73 2.96 15.27 1.67 8.05e-33(+) +81.69 4.07e-34(+) +81.54

53 83.00 2.73 81.60 2.50 12.67 1.50 1.05e-35(+) +84.73 3.04e-36(+) +84.47

54 85.13 3.23 83.60 3.14 15.80 1.66 1.15e-33(+) +81.44 1.14e-33(+) +81.10

55 84.87 2.83 80.80 2.31 14.20 1.52 2.22e-35(+) +83.27 1.76e-36(+) +82.43

According to these experimental results, we employ statistical techniques to analyze the behaviour
of the three algorithms over the 55 instances of the SAT problem. There are two statistical methods:
parametric and non-parametric [6]. The former, also called single-problem analysis, uses a parametric sta-
tistical analysis t-test to analyse whether there is a significant difference between the two algorithms solv-
ing the optimization problem. The latter, also called multiple-problem analysis, applies non-parametric
statistical tests such as Wilcoxon’s and Friedman’s tests, to compare different algorithms whose results
represent average values for each problem, regardless of the inexistence of relationships among them.
Therefore, a 95% confidence Student t-test is first applied to check whether the number of false clauses
of the two pairs of algorithms, QEAM vs. QIEA and QEAM vs. QEPS, are significantly different or not.
Furthermore, the percentage of improvement (%) in the average number of false clauses due to the QEPS
algorithm over QIEA and QEPS is also listed in Table 2. Then two non-parametric tests, Wilcoxon’s and
Friedman’s tests, are employed to check whether there are significant differences between the two pairs
of algorithms, QEAM vs. QIEA and QEAM vs. QEPS. The level of significance considered is 0.05. The
results of Wilcoxon’s and Friedman’s tests are shown in Table 3. The symbols + and - in Tables 2–3
represent significant difference and no significant difference, respectively.

In the experiments carried out on the QEAM, the QEPS and the QIEA, we also record the average
elapsed time for the first ten SAT problems over 30 independent runs and for the remaining 55 instances
of the SAT problem over 15 independent runs. The comparisons of the three algorithms are illustrated in
Fig. 10. The x-axis and y-axis represent the number of SAT problems and the elapsed time, respectively.

As shown in Table 1, the QEAM greatly outperforms the QIEA and the QEPS in terms of the success-
ful rates and the average number of evaluations. Also, Table 1 shows that QEPS obtains higher successful
rates and smaller average number of evaluations than QIEA. It can be seen from the experimental results
of 55 SAT bench problems in Table 2 that the QEAM achieves much better results than the QIEA and
the QEPS. The QEPS obtains better results than the QIEA in 54 out of 55 cases. The t-test results
demonstrate that there are 55 significant differences between the two pairs of algorithms, QEAM vs.
QIEA and QEAM vs. QEPS. The p-values of the two non-parametric tests in Table 3 are far smaller
than the level of significance 0.05, which indicates that the QEAM really outperforms the QIEA and the
QEPS by introducing the framework and some rules of P systems with active membranes. It is worth
noting that the study in [6] shows that the non-parametric statistical tests are more appropriate than
parametric statistical tests in the analysis of the behaviour of the evolutionary algorithms over multiple
optimization problems.

The QEPS uses the framework and some evolution rules of P systems. Each elementary membrane
evolves for a certain number of generations in a non-deterministic way, and then all elementary membranes
communicate in the skin membrane. Thus, the QEPS has better population diversity and the capability
to balance exploration and exploitation. Consequently the QEPS obtains better results and smaller
elapsed time, shown in Fig. 10, than the QIEA. The QEAM goes further and applies the framework
and some evolution rules of P systems with active membranes. The good performance of the QEAM is
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Figure 10: Comparisons of elapsed time.

due to the combination of independent evolution of each elementary membrane in a non-deterministic
way, communication in the skin membrane, membrane separation and merging, and a local search in
the skin membrane. Figure 10 shows that the QEAM and QEPS consumes less time than QIEA, which
indicates that the use of evolution rules of P systems in the QEAM and QEPS has little effect on the
overall computational load. Furthermore, the QEAM and QEPS may use a slightly smaller number of
evaluations of the solutions than the QIEA because of the randomness of evolutionary generations for
each elementary membrane. Additionally, as a result of the use of membrane separation and division, the
QEAM consumes slightly more time than the QEPS, which is shown in Fig. 10.

Table 3: Results of non-parametric statistical tests for the two pairs of algorithms, QEAM vs. QEPS and QEAM
vs. QIEA, in Table 2. The symbol + represents significant difference.

Tests QEAM vs. QIEA QEAM vs. QEPS
Wilcoxon test (p-value) 1.21e-13 (+) 1.21e-13 (+)
Friedman test (p-value) 1.11e-10 (+) 1.11e-10 (+)

4 Conclusions
Membrane algorithms, defined by carefully mixing selected ingredients of P systems and meta-

heuristic search methodologies, and the interaction between P systems and quantum computing, are
highly promising and give rise to challenging research issues, which are mentioned as open problems and
research topics in [7, 21]. Benefiting from the cross-fertilization of ideas from P systems, evolutionary
computation and quantum computing areas, this paper discussed a novel membrane algorithm combing P
systems with active membranes and QIEA to solve satisfiability problem. A large number of experiments
show that QEAM performs better than QEPS and QIEA. As further work, we aim to investigate other
interactions between the three disciplines and their applications to specific problems.
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