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Abstract: The analysis of medical streaming data is quite difficult when the prob-
lem is to estimate health-state situations in real time streaming data in accordance
with the previously detected and estimated streaming data of various patients. This
paper deals with the multivariate time series analysis seeking to compare the current
situation (sample) with that in chronologically collected historical data and to find
the subsequences of the multivariate time series most similar to the sample. A visual
method for finding the best subsequences matching to the sample is proposed. Using
this method, an investigator can consider the results of comparison of the sample
and some subsequence of the series from the standpoint of several measures that may
be supplementary to one another or may be contradictory among themselves. The
advantage of the visual analysis of the data, presented on the plane, is that we can
see not only the subsequence best matching to the sample (such a subsequence can
be found in an automatic way), but also we can see the distribution of subsequences
that are similar to the sample in accordance with different similarity measures. It
allows us to evaluate differences among the subsequences and among the measures.
Keywords: Streaming data, similarity measures, multivariate time series, visualiza-
tion, multidimensional scaling.

1 Introduction

Time series data are widely available in different fields including medicine, finance, and
science. A time series is a collection of chronologically performed observations of the values
of a feature that characterizes the behaviour of a particular object. There are many topics
in time series data mining, i.e., similarity search, clustering, classification, anomaly detection,
motif discovery, etc. The similarity problem can be defined as a comparison of two time series to
determine whether they are similar or not. Usually, the choice of a similarity measure can affect
the result of data mining tasks. By a similarity measure we mean a method, which compares
two time series and returns the value of their similarity. If the object is characterized by several
features, we have a multivariate time series (MTS) [1].

In this paper, we investigate the similarity search in multivariate physiological time series. A
physiological time series is a series of some medical observations over a period of time. Such a type
of data can be collected using devices (or sensors) that collect personal medical features, such as
heart rate, blood pressure, etc. An example of such data can be the intensive care multivariate
online-monitoring time series [2]. A sensor is an instrument that detects or measures a physical
or environmental characteristic or state, transmits and/or records the reading in some form (e.g.,
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Figure 1: Example of the multivariate time series

a visual display, audio signal, digital transmission, etc.). A sensor converts the physical quantity
to electric output. For example, a pressure sensor converts pressure to electric output. Remote
monitoring of health parameters such as the pulse rate, oxygen level in blood or blood pressure
can be very helpful for early detection of diseases, resulting in reduction of treatment time.

Most methods, used to analyse medical data, focus primarily on analysing the univariate
time series. However, because of parameter dependences and variation over time, examination
of all medical data together in a multivariate time series can provide more information about the
data and patient, to make a better diagnosis and treat the patient [3].

Therefore, this paper deals with the multivariate time series analysis with a view to com-
pare the current situation with that of in chronologically collected historical data, and to find
subsequences of the multivariate time series most similar to the sample, corresponding, e.g. to
the current situation. An example of MTS of four features (heart rate HR, non-invasive systolic
arterial blood pressure SYS, non-invasive diastolic arterial blood pressure DIAS, temperature
TEMP) is presented in Figure 1.

Let us have a multivariate time series of n features and Ta observations:

Xa =









xa
11

· · · xa
1Ta

...
. . .

...

xan1 · · · xanTa









.

Denote the sample of n features and Tb observations as

Xb =









xb
11

· · · xb
1Tb

...
. . .

...

xbn1 · · · xbnTb









.

Here Ta > Tb. In fact, Xa and Xb are matrices.
As a result, we need to find the optimal place of Xb on Xa. The place is defined by some

time moment T∗ : 1 ≤ T∗ ≤ Ta − Tb + 1. Our procedure analyses the multivariate time series
Xa by using the moving time window the width of which is adapted to the current situation Xb

(width is equal to Tb) and comparing the content of this window with the sample, in the sense
of several similarity measures, at the same time.

Visual method of finding the best subsequences matching to the sample is proposed in this
paper. As it is indicated in [4], the goal of visual analytics research is to turn the information
overload into an opportunity, i.e. decision-makers should be enabled to examine massive, mul-
tidimensional, multisource, time varying information stream to make effective decisions in time
critical situations.
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There are attempts to apply visual analysis for the streaming data. The example is the Vi-
sual Content Analysis of Real-Time Data Streams project [5] at the Pacific Northwest National
Laboratory. Its goal was to allow users to quickly grasp dynamic data in forms that are intuitive
and natural without requiring intensive training in the use of specific visualization or analysis
tools and methods. The project has prototyped five different visualization prototypes that rep-
resent and convey dynamic data through human-recognizable contexts and paradigms such as
hierarchies, relationships, time and geography.

In this paper, we suggest using the specific visualization tools and methods (multidimensional
data visualization [6]) that are effective and also do not require intensive training of the users.
Moreover, we show a possibility of making the decision, based on five criteria of similarity of the
sample with the subsequence of real-time data stream by representing the similarity as a point
on a plane. Dimensionality reduction and visual analysis of multidimensional data [6] have been
applied when comparing the best found subsequences in Xa.

The proposed method is described in Section 2. Similarity measures for multivariate time
series and comparative analysis of the measures are presented in Section 3. Multidimensional
data visualization is reviewed in Section 4, where the emphasis is put on the multidimensional
scaling. Comparative analysis of similarity measures for multivariate time series is presented in
Section 5. An example, illustrating the proposed method, is presented in Section 6.

2 Visual Method for Finding the Best Subsequences Matching to

the Sample

In our method, the multivariate time series Xa are analysed by using the moving time window.
The width of this window is adapted to the current situation (sample) Xb and is equal to Tb. The
content of this window is compared with the sample, in the sense of several similarity measures
at the same time. It includes the dimensionality reduction procedure that allows us to observe
multidimensional data visually.

The visual method for finding the best subsequences, matching to the sample, can be gener-
alized as follows:

1. Let us have: - a multivariate time series Xa of n features and Ta observations; - sample
Xb of n features and Tb observations; - m similarity measures Si, i = 1, . . . ,m.

2. The sample Xb is compared with all subsequences of Xa by using m similarity measures
Si, i = 1, . . . ,m. The subsequences are obtained by moving the time window in the Xa

from beginning to end. The content of such a window is a matrix of n rows. Denote it by
Xc. The width of the window (the number of columns of Xc) is adapted to the current
situation (sample) Xb (its width is equal to Tb). For each measure, k subsequences are
chosen most similar to the sample. Therefore, the total number of subsequences for a
further analysis is equal to km.

3. Each comparison of the sample with a subsequence, chosen in the way defined in the
step above, produces a m-dimensional point Sq = (Sq1, Sq2, . . . , Sqm), where, in our case,
q = 1, . . . , km. Let us derive two additional points: - S0 = (S01, S02, . . . , S0m) is the
array of values of all similarity measures, computed for the subsequence, that is ide-
ally coincident with the sample (the array of the best values of m similarity measures);
- SC = (SC1, SC2, . . . , SCm) is the weight center of Sq = (Sq1, Sq2, . . . , Sqm), q = 1, . . . , km.
Therefore, the total number of m-dimensional points for discovering the most similar subse-
quences to the sample is equal to km+2. Afterwards, the normalization of the components
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of these points is performed by z-score. Denote the obtained matrix of normalized points
by Z. It consists of km+ 2 rows and m columns.

4. The points from matrix Z are mapped on the plane using the Multidimensional Scaling [6]
(or are other algorithm of nonlinear projection of multidimensional points on the plane).
Denote the resulting matrix by Y , that contains km + 2 rows, corresponding to different
comparisons of the sample with other subsequences, and 2 columns. Each row is coordinates
of the point on the plane.

5. The investigator analyses the information presented graphically, where all m-dimensional
points are represented as the points on a plane, and makes decisions. In general, the most
similar subsequence to the sample can be the subsequence, the corresponding point of which
on a plane is closest to the projection of S0 on the plane. However, more subsequences may
be considered as similar to the sample. The points on the plane, corresponding to such
subsequences, must be closer to the projection of S0 on a plane than to the projection of
SC . These rules can be checked automatically in the program realization of this method,
however participation of the investigator is valuable, because it gives a possibility to him
to cognize the data deeper.

The advantage of this method is that the investigator can consider the results of comparison
from the standpoint of several measures that may be supplementary to one another or contra-
dictory among themselves. Therefore, the similarity of subsequences with the sample will be
evaluated from different standpoints. The method is universal, because different sets of similar-
ity measures can be chosen, depending on the problem, but the scheme of decision remains the
same. Moreover, the involvement of the dimensionality reduction and visual analysis of multidi-
mensional data in the proposed method renders the opportunity to the investigator to participate
in the final decision, when comparing the best found subsequences of the multivariate time series
with the sample. However, the decision on their similarity can also be made automatically.

3 Similarity Measures for Multivariate Time Series

To detect events in real multivariate time series, it is necessary to compare time series using
the appropriate similarity measure [7]. Different techniques and similarity measures are intro-
duced and used for comparison of multivariate time series of different nature [8], [9]. Multivariate
time series can be reduced to univariate time series and their similarity can be measured, using
a univariate time series approach [10]. That may lead to a great loss of information, there-
fore, we concentrate on the multivariate time series approach here. Five similarity measures
Si, i = 1, . . . , 5, used in this paper for multivariate time series, are presented below.

Let us compare two multivariate time series:

Xa =









xa
11

· · · xa
1Ta

...
. . .

...

xan1 · · · xanTa


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
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and Xb =


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
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· · · xb
1Tb

...
. . .

...

xbn1 · · · xbnTb


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.

The Frobenius norm is often used in the matrix analysis [11]. This similarity measure is
based on the Euclidean distance. The Frobenius norm of a matrix Xb is defined by the formula:

∥

∥

∥
Xb

∥

∥

∥

F
=

√

√

√

√

n
∑

p=1

Tb
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(xbpq)
2 =

√

tr((Xb)′Xb), (1)
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where tr is the sum of elements on the diagonal of the square matrix. The Frobenius norm is
used to compare the similarity of two matrices. The similarity of Xb and Xc is defined by the
formula Frob =

∥

∥Xb −Xc
∥

∥

F
. The best possible value of the Frobenius norm is 0.

The correlation coefficient between two matrices of the same size (Matrix Correlation Coeffi-
cient) can also be used as a similarity measure [12]:

r =

∑n
p=1

∑Tb

q=1
(xbpq − X̄b)(xcpq − X̄c)

√

∑n
p=1

∑Tb

q=1
(xbpq − X̄b)2

∑n
p=1

∑Tb

q=1
(xcpq − X̄c)2

, (2)

where X̄b and X̄c are the means of Xb and Xc, respectively. This measure is the Pearson
correlation coefficient adapted to matrices and calculated using the MATLAB corr2 function
[12]. The best possible value of the matrix correlation coefficient is 1.The correlation coefficient
between two matrices has found wide applications in the image analysis, molecular biology, etc.

The third similarity measure for multivariate time series is the Principal Component Analysis
(PCA) similarity factor [9], [13]. PCA is a well-known and wide used technique for dimension-
ality reduction of data. It is a linear transformation that projects the original data to a new
coordinate system with the minimal loss of information. In multivariate cases, the information
is the structure of the original data, i.e. the correlation between the features and alteration of
the correlation structure among them. To create a projection, PCA selects coordinate axes of
the new coordinate system one by one according to the greatest variance of any projection. The
PCA similarity factor is defined by the following formula:

SPCA(X
b, Xc) = tr(L′MM ′L), (3)

where L and M are matrices that contain the first l principal components of Xb and Xc, respec-
tively. It means that the principal components are computed by the standard algorithm using
the matrices (Xb)′Xb and (Xc)′Xc, and then l principal components with the highest eigenvalues
are selected. The best possible value of the PCA similarity factor is l. In our experiments l = 1.

Dynamic time warping (DTW) [14] is the most widely used technique for comparison of
time series data, where extensive a priori knowledge is not available. The Euclidean distance
reflects the similarity in time, while the dynamic time warping (DTW) reflects the similarity in
shape. DTW searches for the best alignment between two time series, attempting to minimize
the distance between them. The advantage of DTW is that it can handle unequal series and
distortions. Multidimensional Dynamic Time Warping (MDTW) is presented in [15]. Some
distance matrix is defined: {d(p, q) =

∑n
k=1

(xbkp − xckq)
2, p, q = 1, . . . , Tb}. Then the matrix D

of cumulative distances is calculated as in the traditional DTW algorithm [15]:

D(p, q) =


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d(1, 1), if p = 1, q = 1,

d(p, q) +D(p− 1, q), if p = 2, . . . , Tb, q = 1,

d(p, q) +D(p, q − 1), if p = 1, q = 2, . . . ., Tb,

d(p, q) +min















D(p− 1, q)

D(p, q − 1),

D(p− 1, q − 1)

in other cases.

(4)

(p, q) defines the pair of the pth observation in Xb and the qth observation in Xc. Finally, the
minimal path and the distance along the minimal path are obtained using matrix D. The path
must start at the beginning of each time series at (1, 1) and finish at the end of both time series
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at (Tb, Tb). See [13] for details. The best possible value of MDTW is 0. On the other hand,
DTW can lead us to unintuitive alignments, where a single point on one time series maps onto
a large subsection of another time series [16], [17]. Also, DTW can fail to find the obvious and
natural alignments in two time series because of a single feature (i.e. peak, valley, infection
point, plateau, etc.). One of the causes is due to the great difference between the lengths of the
compared series.

In this paper, the fifth similarity measure for multivariate time series is Eros (Extended Frobe-
nius norm) [9]. Eros is based on the principal component analysis and computes the similarity
between two MTS items by measuring how close the corresponding principal components are us-
ing the eigenvalues as weights. In our case, Xb and Xc are two multivariate time series items of
n features and Tb observations. V b = [vb

1
, . . . , vbn] and V c = [vc

1
, . . . , vcn] are two right eigenvector

matrices obtained by applying a singular value decomposition (SVD) to the covariance matrices
M b and M c of features in Xb and Xc respectively. The Eros similarity of Xb and Xc is defined
as follows:

Eros(Xb, Xc, w) =

n
∑

i=1

wi|
〈

vbi , v
c
i

〉

|, (5)

where
〈

vbi , v
c
i

〉

is the inner product of vbi , and vci , w is a weight vector, based on eigenvalues of
the MTS data set (see more in detail in [9]),

∑n
i=1

wi = 1.

4 Multidimensional Data Visualization

The method, proposed in Section 2 for finding the best subsequences matching to the sample,
is based on the visual presentation and analysis of multidimensional points the coordinates of
which are the values of similarity measures, computed for a pair of subsequences. The visualiza-
tion technology is introduced below.

For an effective data analysis, it is important to include a human into the data exploration
process and combine the flexibility, creativity, and general knowledge of the human with the
enormous storage capacity and computational power of today’s computer. Visual data mining
aims at integrating the human in the data analysis process, applying the human’s perceptual
abilities to the analysis of large data sets, available in today’s computer systems. Visualization
finds a wide application in the medical data analysis, too [18], [19].

The goal of the projection method is to represent the input data items in a lower-dimensional
space so that certain properties of the structure of the data set were preserved as faithfully as
possible. The projection can be used to visualize a data set, if rather a small output dimensional-
ity is chosen. One of these methods is the principal component analysis (PCA). The well-known
principal component analysis [6] can be used to display the data as a linear projection on a
subspace of the original data space such that best preserves the variance in the data. PCA
cannot embrace nonlinear structures, consisting of arbitrarily shaped clusters or curved mani-
folds, since it describes the data in terms of a linear subspace. Therefore, several methods have
been proposed for reproducing nonlinear higher-dimensional structures on a lower-dimensional
display: multidimensional scaling and its modifications [6], [20], [21], [22], Isomap [23], locally
linear embedding [24], etc. Various neural network approaches are used for this aims as well (see
e.g. [25], [26], [27]).

Multidimensional scaling (MDS) is a group of methods that project multidimensional data to
a low (usually two) dimensional space and preserve the interpoint distances among data as much,
as possible. Let us have the m-dimensional points Sq = (Sq1, Sq2, . . . , Sqm), q = 1, . . . , t, (Sq ∈
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Rm). The pending problem is to get the projection of these points onto the plane R2. Two-
dimensional points Y1, Y2, . . . , Yt ∈ R2 correspond to them. Here Yq = (yq1, yq2), q = 1, . . . , t.
Denote the distance between the points Sq and Sp by d∗qp, and the distance between the corre-
sponding points Yq and Yp on the projected space by dqp. In our case, the initial dimensionality
is m, and the resulting one is 2 (2-D). Naturally, 1-D and 3-D projections could be considered,
too. However, in the 1-D case, we lose knowledge that can be obtained from 2-D or 3-D views.
Advantages of 3-D can be achieved when special means to present such data on the screen are
applied. Therefore, 2-D projections of the multidimensional data are commonly used.

There exists a multitude of variants of MDS with slightly different so-called stress functions.
In our experiments, the raw stress is minimized EMDS =

∑t
q<p (d

∗

qp − dqp)
2, seeking to find the

optimal coordinates of points Y1, Y2, . . . , Yt.

5 Comparative Analysis of Similarity Measures for Multivariate

Time Series

The data from PhysioNet/Computing in Cardiology Challenge are used for the experimental
analysis (http://www.physionet.org/challenge/2012/ ). The records were collected in the Inten-
sive Care Unit. In the experiments we used a set Xa, containing multivariate time series of
50 patients of the same age, i.e. if to follow the notation of Section 1, we have 50 different
multivariate time series Xa

i , i = 1, . . . , 50, each consisting of 48 observations (columns) of n = 4
features (rows: non-invasive diastolic arterial blood pressure, non-invasive systolic arterial blood
pressure, heart rate, temperature). Xa = {Xa

i , i = 1, . . . , 50}.
In general, the sample Xb (the current situation) does not belong to Xa. However, seeking

for more precise conclusions in this research, we have chosen Xb in Xa at random of the length
Tb = 8. Moreover, we have chosen Xb such that its contents belongs to the same patient, i.e. Xb

does not consist of the parts of different patients’ records.
The goal is to go through time windows Xc (of the size of Xb) in Xa and compare them

with Xb. For each similarity measure the optimal place of Xb on Xa has been found. By the
optimal place of Xb, in accordance with the chosen similarity measure, we assume Xc such that
produces the best value of this similarity measure when comparing Xb and Xc. Then the values
of remaining measures were computed for the same Xc. Due to the specific character of data (50
patients), the place of Xc on Xa may be denoted as follows: i[Tstart;Tend], where i is the order
number of a patient, i = 1, . . . , 50, Tstart and Tend are start and end positions of Xc on Xa. The
illustration results are presented in Table 1.

Let us choose the sample at random. In our case, Xb = 1[23− 30]. It was compared with all
the other available subsequences Xc of the analysed data set Xa. Considering that the sample
taken for the analysis is selected from Xa and striving for the independence of investigation
results on this case, we choose Xc only such that has no more than 5 common observations with
Xb.

Five subsequences Xc 6= Xb, that are most similar to the sample, were selected according
to each similarity measure. Therefore, we get five collections of five most similar subsequences.
The total number of the selected subsequences is 25 and some of them coincident according to
different measures. For each collection, the values of all similarity measures are computed and
presented in Table 1. The best values obtained for all similarity measures are marked in bold.

Table 1 shows that different measures often mark different (not the same) subsequences as
similar. All the measures acquire their best values in the case of identical coincidence of Xb and
Xc. Thus, a further task is to summarize the obtained results and to develop a method for select-
ing of the most similar subsequence Xc to the sample Xb. The analysis of subsequences, found by
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Table 1: Most similar subsequences according to each similarity measure; sample Xb = 1[23−30]

No. Xc Similarity measures
r Eros Frob MDTW SPCA

Ideal coincidence 0 1[23-30] 1 1 0 0 1

r

1 1[16-23] 0.9639 0.1745 4.4224 16.9434 0.7175
2 48[37-44] 0.9575 0.1302 2.5551 19.2153 0.6874
3 1[17-24] 0.9504 0.6067 3.9967 17.0556 0.8480

4 42[16-23] 0.9455 0.3440 3.8527 30.8482 0.1680
5 1[19-26] 0.9430 0.2969 3.1215 18.8935 0.8474

Eros

6 10[30-37] 0.0013 0.9423 6.5985 59.1889 0.9847

7 25[31-38] -0.3214 0.9099 7.1453 62.7647 0.6705
8 49[35-42] -0.2209 0.9064 8.0460 41.6136 0.5461
9 17[9-16] 0.6266 0.8979 4.6676 39.8056 0.4329
10 40[16-23] 0.1164 0.8948 7.7252 55.2800 0.5772

Frob

11 48[37-44] 0.9575 0.1302 2.5551 19.2153 0.6874
12 48[36-43] 0.9366 0.4445 2.8003 18.6496 0.9789

13 1[36-43] 0.8931 -0.2531 2.9396 31.2548 0.9206
14 48[35-42] 0.9169 -0.2479 3.0346 23.2913 0.9148
15 48[38-45] 0.8943 0.1853 3.0886 25.6391 0.5152

MDTW

16 34[39-46] -0.0158 0.4709 7.2486 8.8982 0.3182
17 22[14-21] 0.1724 0.6900 6.5888 9.6141 0.5765
18 29[4-11] 0.5061 -0.0177 4.9202 9.6744 0.6974
19 12[12-19] 0.6511 -0.3166 4.8690 10.1095 0.9553

20 15[3-10] 0.5351 0.2744 7.4371 11.0668 0.2524

SPCA

21 10[32-39] -0.1145 0.0688 7.5452 96.4585 0.9920

22 16[33-40] -0.0749 0.2350 9.2904 67.8260 0.9896
23 10[33-40] -0.0695 0.0074 7.6335 93.8404 0.9896
24 10[34-41] 0.0036 -0.4202 7.5849 70.1514 0.9892
25 4[5-12] 0.4171 0.1522 6.9828 57.2766 0.9890

different measures shows that matrix correlation coefficient and Frobenius norm measures try to
find the most similar subsequence according to the values of the subsequence elements. MDTW
tends to compare the data change dynamics: the scales of features of the subsequences can be
different, but MDTW can indicate these sequences as similar. SPCA and Eros measures do not
also depend on the scale and are less sensitive to abrupt signal changes. It is very important in
the medical data analysis.

The correlation analysis (see Table 2) has the depicted a strong inverse correlation between
the Frobenius norm and the matrix correlation coefficient. For the investigation, 50 randomly
selected samples Xb

i , i = 1, . . . , 50 consisting of Tb = 8 successive observations were selected;
from each Xa

i one subsequece Xb
i was selected as a sample. For each selected sample and for

each similarity measure 25 most similar subsequences were identified in the whole Xa. Just like
above, we choose Xc only such that has no more than 5 common observations with Xb. The total
number of comparisons of Xb and Xc is 1250. According to these data, the correlation matrix of
similarity measures has been computed. It is presented in Table 2. As the results shows, there
is a very strong inverse correlation (-0.7355) between the Frobenius norm Frob and the matrix
correlation coefficient r.

Because of the strong inverse correlation between the Frobenius norm and the matrix corre-
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Table 2: Correlation matrix of similarity measures
r Eros Frob MDTW SPCA

r 1.0000 -0.1917 -0.7355 -0.2127 -0.1652
Eros -0.1917 1.0000 0.1819 0.1731 -0.1748
Frob -0.7355 0.1819 1.0000 0.1071 0.1055
MDTW -0.2127 0.1731 0.1071 1.0000 0.0454
SPCA -0.1652 -0.1748 0.1055 0.0454 1.0000

lation coefficient, the Frobenius norm was casted away. It has been done with a view to reduce
the general impact of the correlated parameters on the investigation results. In such a way,
outcasting of the Frobenius norm measure evens the impact of the rest measures.

For the second investigation 50 randomly selected samples Xb
i , i = 1, . . . , 50 consisting of

Tb = 8 successive observations have been selected. One sample Xb
i is selected from each Xa

i .
For each selected sample and for each similarity measure (4 similarity measures are investigated
now), 20 most similar subsequences were identified in the whole Xa. Just like previously, we
choose Xc only such that has no more than 5 common observations with Xb. The total number
of comparisons of Xb and Xc is 1000. According to the obtained data, for each sample Xb

i and
for four measures, a 4-dimensional point is constructed: S

i

q = (Si
q1, S

i
q2, S

i
q3, S

i
q4), q = 1, . . . , 20.

Coordinates of the point are the values of different measures. For example, the ideal subsequence
match is assumed as S0 = (1, 1, 0, 1). Further, the Euclidean distance is calculated between the
ideal match S0 and all the rest S

i

q of similar subsequences. Then the subsequences are sorted
according to the shortest distance and the first 5 subsequences are treated as similar (from the
total 5x50 subsequences). Table 3 summarizes the investigation results, i.e. shows the most often
found similar subsequences.

Table 3: Most often found similar subsequences according to each similarity measure
Frequencies r Eros MDTW SPCA

Total 250 93 32 91 34
Percentage from 250
subsequences

31 11 30 11

As can be seen from Table 3, the matrix correlation coefficient and MDTW measures are the
best.

In addition, the Frobenius norm measure can be considered together with these two measures
because of its high correlation with the matrix correlation coefficient measure. Moreover, a
high correlation of the Frobenius norm with the matrix correlation coefficient does not mean
that they yield very similar results. The experiment below illustrates this fact. Ten most
similar subsequences were found for the chosen sample, using these two similarity measures for
multivariate time series. The obtained subsequences are presented in Table 4 in decreasing order
of their goodness, depending on the similarity measure. Coincident subsequences are presented
in different tint of grey colour. We see three coincident subsequences only with quite different
order numbers.
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Table 4: Comparison of the Frobenius norm with the matrix correlation coefficient

6 Experimental Illustration of the Visual Method for Finding the

Best Subsequences, Matching to the Sample

The performance of the proposed method is illustrated by the example. Like in Section 5, the
data from PhysioNet/Computing in Cardiology Challenge (http://www.physionet.org/challenge)
are used for the experimental analysis.

1. Sample Xb = 1[23− 30] has been chosen.

2. The sample is compared with all the subsequences of Xa by using 5 similarity measures,
given in Section 3. In accordance with each measure, 10 subsequences, most similar to the
sample, are chosen. Therefore, the total number of subsequences for a further analysis is
equal to 50.

3. Each comparison of a sample to a subsequence, chosen in the way defined in the step
above, produces the 5-dimensional point Sq = (Sq1, Sq2, . . . , Sq5), where q = 1, . . . , 50. Let
us derive two additional points:

• S0 = (S01, S02, . . . , S05) is the array of values of all the similarity measures computed
for the subsequence that is ideally coincident with the sample (the array of the best
values of m similarity measures); in our case, S0 = (1, 1, 0, 0, 1);

• SC = (SC1, SC2, . . . , SCm) is the weight center of Sq = (Sq1, Sq2, . . . , Sq5), q = 1, . . . , 50;
in our case, SC = (0.39298, 0.31968, 5.98348, 35.26159, 0.715413).

Therefore, the total number of 5-dimensional points for discovering the most similar subse-
quences to the sample is equal to 52. Afterwards, the normalization of the components of
these points is performed by z-score. The obtained matrix Z of normalized points consists
of 52 rows and 5 columns.

4. The points from matrix Z are mapped on the plane using the Multidimensional Scaling.
The resulting matrix is Y , the rows of which correspond to different comparisons of the
sample with other subsequences and are the coordinates of points on the plane.

5. Figure 2 presents graphically all 52 5-dimensional points from Y on a plane for decision
making. In general, the subsequence best matching to the sample can be the subsequence
the corresponding point of which on a plane is closest to the projection of S0 on a plane.
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J. Bernatavičienė, G. Dzemyda, G. Bazilevičius,

V. Medvedev, V. Marcinkevičius, P. Treigys

However, more subsequences are similar to the sample. The points on the plane, corre-
sponding to such subsequences, must be closer to the projection of S0 on the plane than
to the projection of SC . If we draw a circle with the center on the projection of S0 on the
plane and the radius that is equal to the distance between the projections of S0 and SC ,
we can visually detect subsequances most similar to the sample. In Figure 2, the colour of
the point corresponds to the similarity measure according to which the subsequence falls
among the most similar ones:

• Red points - matrix correlation coefficient,
• Green points - Eros,
• Yellow points - Frobenius norm,
• Blue points - MDTW,
• Magenta points - SPCA.

(a) (b)

Figure 2: Results for the visual analysis: a) sample 1[23-30]; b) sample 5[15-22]

Figure 3: Two subsequences most similar to the sample 1[23-30]

In Figure 2a, two best similarity measures, in accordance with which the subsequence falls
among the most similar ones, are the matrix correlation coefficient and Frobenius norm measures.
In Figure 2b, these two measures are exceptional again, however MDTW and Eros have influenced
the appearance of subsequences in the most similar subsequence list. A relatively small number
of the most similar subsequences is produced by SPCA, only. Therefore, all the measures are
important and can be successfully used jointly .

Finally, the sample and two found most similar subsequences are presented, as an example,
in Figure 3.
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7 Conclusions

This paper deals with the multivariate time series analysis seeking to compare the current
situation (sample) with that in chronologically collected historical data and to find subsequences
of the multivariate time series most similar to the sample. The visual method for finding the best
subsequences matching to the sample has been proposed. Using this method, the investigator
can consider the results of comparison of the sample and some subsequence of the series from
the standpoint of several measures that can be supplementary to one another or contradictory
among themselves.

The analysis of medical streaming data is quite a difficult problem. The data are very
specific to an individual patient. It may cause the problem of reliability of the decision if the
problem is to estimate the health-state situations in real time streaming data in accordance with
the previously detected and estimated streaming data of various patients. The usage of a larger
number of similarity measures (not a single fixed measure) can increase the efficiency of decisions
on the health state of the patient based on the streaming data of other patients.

The advantage of the visual analysis of the data, presented on the plane, is that we can
see not only the subsequence best matching to the sample (such a subsequence can be found
in the automatic way), but also we can see the distribution of subsequences that are similar to
the sample in accordance with different similarity measures. It allows us to evaluate differences
among the subsequences and among the measures.

Five similarity measures were integrated in this research. Note that the correlation coefficient
between two matrices is quite effective and easily interpreted among other measures, that are
usually used for multivariate streaming data analysis. However, the best efficiency of applications
of this measure is achieved when combining it with other measures.

This method is universal and can be used in the analysis of streaming data of various nature
(not only medical data). It is necessary to select the proper set of similarity measures depending
on the problem solved only.
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